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1. GEOMETRICAL OPTICS OF INHOMOGENEOUS WAVESTo understand better the subsequent questions let us begin from the simplest approachof optics known as geometrical optics. Namely, let us consider the medium having themiddle complex susceptibility �(r) = �0(r) + i�00(r) slowly varying in space compared tothe wavelength � = 2�c=! of spatially inhomogeneous monochromatic wave of frequency! (c is a speed of light). We write the wave �eld asE(r) = I1=2(r) exp [i�(r)] ; I(r) = jE(r)j2: (1)where I(r) is a wave intensity. The Maxwell's equation may be written in the form[�grad2 �K2]E(r) = K2�(r)E(r); K = !=c (2)where K is a wave number of monochromatic wave. The equation is valid at least in anapproximation of electric dipole interaction between the wave and the matter.Now let us take into account that the intensity cannot change quickly because inopposite case the wave either disappears or will be of great intensity which is out of thereal life. As for the phase �(r); it can change with arbitrary speed. Therefore we mayneglect the second derivative of the intensity. Bearing this in mind we substitute thewave �eld of Eq.(1) in the Eq.(2). After the accurate calculating the �rst and secondderivatives we obtainiI�1=2grad�grad I + i[K2�00 + grad2�]I1=2 = ((grad�)2 �K2(1 + �0))I1=2 (3)Here the left-hand side has a pure imaginary value while the right-hand side has a purereal value. To satisfy the equation we need to put both sides to be equal zero. Thereforewe have two equationsk(r)grad I(r) = [K2�00(r) + grad2�]I(r); k(r) = grad�(r); (4)(grad�)2 = K2(1 + �0); jk(r)j = K(1 + �0(r))1=2 (5)Let us examine what we have obtained. The second equation is a pure equationfor the phase �(r): Moreover, it de�nes directly the modulus of the local wave vectorof local ray. To calculate the phase distribution we need to start from the surface ofconstant phase. Then in each point r of this surface the direction of ray or local wavevector k(r) = grad�(r) is just perpendicular to the surface (see Fig.1(left)). Let s be acoordinate along this direction. Then the equation for the phase along the ray takes asimple form and can be easily solvedd�ds = K(1 + �0(s))1=2; �(s) = �(s0) +K Z ss0 ds1(1 + �0(s1))1=2 (6)where s0 is a coordinate on the ray which corresponds to initial surface. However, wecannot go along the ray so much because the direction of the ray is determined by initialsurface. Therefore we may consider all rays on the initial surface and choose the distance2



l on each ray as being less compared to characteristic length of susceptibility change onone hand, and leading to the de�nite value of phase change. Therefore the distance l isthe distance of constant optical path. The new surface as a geometrical place of ends ofall rays will be once again the surface of constant phase but its curvature may be changed.We de�ne the new directions of ray and repeat the procedure and so on.Thus, we may calculate the phase of wave �eld in all space. It is clear that thisprocedure cannot be accurate in�nitely. It is the way of simple geometrical approximatesolution of the Maxwell's di�erential equation. It is di�cult to imagine or to representthe Maxwell's equation but it is easy to draw the rays. On the other hand, we nowunderstand that the method is good only on small distances from the known surface ofconstant phase and only for a slow change of the electronic density inside the matter. Ifthe medium is homogeneous, namely, the susceptibility � is a constant, then the opticalpath is proportional to the real path of rays. One can verify directly that in this casethe direction of rays stay the same independently of distance from the initial surface. Itis remarkable property of geometrical optics that the rays may converge, intersect eachother and diverge after that, giving the approximately right solution for the phase.The next step is the calculation of the intensity along the rays. For this we have wellde�ned the approximate equationk(r)grad I(r) = K2�00(r)I(r) (7)where we neglect the second derivatives of the phase considering these as small ones. Itis new approximation of the method. This is consistent with the pointed above conditionthat the susceptibility is a slow function. However, near the focus of radiation the secondderivative may be large independently on the property of the matter. Therefore thegeometrical optics does not work in the region near the focus. In other regions we introduceonce again the coordinate s along the ray and we have
θ1

θ2

FIG. 1. The rays are perpendicular to the surface of constant phase (left) and satisty to theFresnel law of refraction at the boundary between two homogeneous media (right)3



dI(s)ds = K2jk(s)j�00(s)I(s); I(s) = I(s0) exp Z ss0 ds1 K2jk(s1)j�00(s1)! (8)The very important property of geometrical optics is that each ray satis�es locally theFresnel law of refraction of the ray at the boundary between two homogeneous media.This law is the same as the Fresnel formula for the plane wave in all cases excluding theglancing incidence, namely,n1 sin �1 = n2 sin �2; ni = (1 + �i)1=2; i = 1; 2 (9)Here �1 and �2 are the angles between the rays before and after the boundary and thenormal to the boundary (Fig.1(right)) Even these two rules:(1) the direction of ray is constant in homogeneous medium,(2) the rays change the direction at the boundary of two homogeneous media accordingto the Fresnel formula of refraction,allow to calculate the properties of many optical systems like set of many lenses of di�erentshape. 2. SMALL ANGLE APPROXIMATIONIn the small angle approximation one assumes that the wave �eld di�ers only slightlyfrom the plane wave with the wave vector k0 having the modulus jk0j = K: So the totalphase �(r) can be written now as�(r) = k0r+ '(r); grad� = k0 + grad' (10)where grad' is much less compared to k0: It is possible only if �(r) � 1, the situationwhich just takes place in case of hard X-ray scattering. Let us use this inequality in explicitform. It is necessary because it is di�cult to calculate the small values simultaneouslywith large values. At least we shall have errors using the computer which makes thecalculations with limited accuracy. The general equation for the phase(grad�)2 = K2(1 + �0) (11)takes the approximate form like thisjk0j2 + 2k0grad'(r) = K2(1 + �0); 2k0grad'(r) = K2�0(r) (12)The last equation shows that we can neglect the small deviation of rays from the basedirection k0 and calculate the phase change introducing the coordinate along the k0:Let now this coordinate be z: Then we haved'(r)dz = 12K�0(r): (13)Similar equations we obtain for intensity and for amplitude of the wavedI(r)dz = K�00(r)I(r); dI1=2(r)dz = 12K�00(r)I1=2(r) (14)4



These equations shows that the small angle approximation allows to simplify the problem.We may keep the direction of rays the same for all points in the transverse plane normalto the base wave vector and we need to calculate only the phase change and the waveamplitude change along this direction. We may write the both equations as one equationfor the complex valueE0(r) = I1=2(r) exp (i'(r)) ; E(r) = E0(r) exp(ik0r) (15)as k0gradE0(r) = i2K2�(r)E0(r) (16)Such an equation may be called as Takagi equation in one beam approximation us-ing the language of the modern X-ray di�raction optics (or X-Ray crystal optics). Thephysical sense of this approximation is very clear. We have the wave which quickly os-cillates in space with the constant wavelength � but the amplitude of this wave and theadditional aperiodic phase shift are the slow functions of space with characteristic lengthof change much larger then the base wavelength �: This is quite similar to the techniqueof radio-physics were the sound wave used to modify the amplitude of radio wave havingmuch shorter wavelength. Such an extra wave is called an envelope wave. However, sim-ilar situations arise in many physical phenomena when some fast process goes togetherwith some slow process. The method of considering is always the same. The variablesare divided on fast variables and slow variables. If we are interested in the fast processthen we can regard the slow process as being unchanged completely and consider the slowvariables as constant. If we are interested in slow process then we need to exclude thefast variable from the equations. So the Eq.(16) is just the Maxwell's equation after theexcluding the fast variable.3. WHAT WE SEE ON THE X-RAY IMAGE OF THE OBJECTLet us introduce the Cartesian coordinate system x; y; z with z-axis along the opticalaxis. The Eq.(16) can be rewritten asdE0(x; y; z)dz = i2K�(x; y; z)E0(x; y; z): (17)Let us choose the plane (x; y) at z = z0 just before the object having unknown structure.If all devices before the object are known we may calculate the wave �eld from the sourcethrough all devices. Therefore we know the function E0(x; y; z0): This may be the planewave when E0(x; y; z0) does not depend on x; y or the spherical wave in the small angleapproximation when E0(x; y; z0) = 1z0 exp iK x2 + y22z0 ! : (18)The plane wave may be treated as a particular case of spherical wave at very large distancez0. 5



Let us choose another plane at z = z1 just after the object. The wave �eld at thisplane is obtained from the solution of Eq.(17) as followsE0(x; y; z1) = E0(x; y; z0) exp� i2K Z z1z0 dz0 �0(x; y; z0)� exp��K2 Z z1z0 dz0 �00(x; y; z0)� :(19)This expression shows that both the amplitude and the phase of the X-ray wave is changedby the object. The phase change is proportional to integral over path of X-ray beamdecrement of refractive index � = �0=2, namely�(x; y) = 2�� Z z1z0 dz0 �(x; y; z0) (20)while the amplitude change is determined by the total absorption of X-ray beam alongthe optical axis and allows to obtain the integral index of absorption.� = �00=2; namelyM(x; y) = 2�� Z z1z0 dz0 �(x; y; z0) (21)Both functions depend on the internal structure of the object through the integral: Andboth functions give the projection of the object along the optical axis as an image likethe photographic image.What we shall see really depends on the kind of source and kind of detector. If weuse quasi-point source (the source having the size less than the details of the object) andwe use a �lm just after and close to the object as a position sensitive detector then eachpoint of the �lm feels only the intensity of the ray incoming to this point. Therefore wemay obtain only the slightly magni�ed map of the integral index of absorption. Such atechnique is widely used today in di�erent spheres of our life, including the diagnosticof human body in medicine. However, this technique demands the X-ray to be absorbedinside the object. It is not easy, especially for small objects consisting of light atoms.For example, biological objects of 1 mm size and of middle density � = 1 g/cm3 givethe value of M -function about 1 to 2 percent for wavelength of radiation � from 0.5 to1 �A. For higher energy of X-rays the absorption drops rapidly therefore the imaging ofmicroobjects (microimaging) is not possible in such a technique.On the other hand, in medicine for diagnostic of human body it is undesirable thatX-rays are absorbed in the body. In addition, the absorption technique may show onlythe parts of body containing a hard atoms having many electrons, mainly, the boneswhile the parts with a small di�erence of density cannot be distiguished. Summarizingall reasons presented above one can see that it is quite desirable to make visible thephase shift produced by the object. The speci�c feature of X-rays of high energy is thatthe decrement of refractive index � is much larger than the index of absorption �: It isshown on Fig.2(left) that for X-Ray energy of 50 keV in Silicon � � 1000� and in Boron� � 100000�: Therefore when the absorption contrast will show nothing completely thephase contrast can show something even for small object.The value of � is easy to estimate. In case of Rayleigh scattering giving the maincontribution and monatomic medium we have6



� = ��2r02� NZ = ��2�CZA; C = 0:27 � 10�5: (22)where r0 = e2=mc2 is the classical electron radius, � is a wavelength in �A, N is a numberof atoms in unit volume, Z is a number of electrons in the atom, A is a mass of atomin atomic units, � is a density in g/cm3: For example, for the object containing Carbonatoms of thickness t = 0:01mm= 10�m and for energy of X-Rays 50 keV (� = 0:25�A)we calculate (� = 2:62 g/cm3) that the phase shift equals � = 0:5 that can be apparentlyregistered. On the other hand, the absorption contrast will be hundred times less thanper cent.In principle, it is not di�cult to see the phase shift even using the �lm. For this weneed to place the �lm far from the object. Because the object produces an inhomogeneousphase shift the rays change their directions in the following passage through the emptyspace (see Fig.2(right)).At some large enough distance after the object the density of rays becomes inhomo-geneous that leads to the inhomogeneous intensity which can be registered. The problemis only that the angle of deviation is very small therefore for small distances the size ofsuch an image will be also small especially for small object. Therefore the requirementon the coherence of the radiation, namely, on the transverse source size, is rather high.Nevertheless, this simple scheme of in-line holography with small a size of projection ofthe source and large a distance from the source to detector compared to the size of objectis successfully realized today on the synchrotron radiation sources of third generation (forexample, ESRF, France). However, simultaneously with this technique, a rather di�erenttechnique is used now which can work with the usual sources of radiation and does notdemand large distances in the experimental setup. Instead of this the perfect crystal -

10 30 50 70 90
101

102

103

104

105

106

 Energy (keV) 

 δ
 / 

β 

B

Si

Fe

FIG. 2. The relation of decrement of refractive index � to index of absorption � is a growingfunction of energy of X-rays (left), the object always incline the X-ray out of its shadow (right)7



collimator - is used for preparing the incident quasi-plane wave and second perfect crystal- analyzer - is used for a registration of local angular deviations of the rays. This techniquegoes from the well developed preceding technique of imaging of crystal lattice defects insingle crystals called X-Ray topography.The �rst step in the theoretical foundation of the technique of X-ray topography wasmade by Takagi who writes the equations describing the interference of X-ray beamsinside the slightly deformed crystal lattice. Let us shortly consider the principles of X-ray topography which allows to understand better the technique which uses the perfectcrystals. 4. X-RAY TOPOGRAPHY AND TAKAGI EQUATIONSWe know that the crystal lattice is a periodical structure, therefore the susceptibilityof the crystal satisfy the translational symmetry and can be expanded as a Fourier sumover the reciprocal lattice vectors�id(r) =Xh �(id)h exp(ihr); �(id)h = 1V0 Z dr�id(r) exp(�ihr) (23)Here V0 is a volume of the unit cell and the integration is carried out over this volume.What happens when atoms are displaced from its positions in perfect crystal lattice. Wemay neglect the change of inner structure of electronic density of the atoms near thedefect of crystal lattice. Therefore we shall suppose that atoms are displaced as a whole.Then we have a relation�(r� u(r)) = �id(r) =Xh �(id)h exp(ihr) (24)where u(r) is just a displacement of the atoms near the defect which depends on the localposition of the atom.The crystal lattice in large volume has the same reciprocal lattice vectors thereforewe need now to calculated the Fourier coe�cients of real susceptibility over the idealreciprocal lattice vectors. So we multiply the �(r) by exp(�ihr) and integrate over theunit cell �h(r) = 1V0 Z dr�(r) exp(�ihr) (25)Now let us use the Eq.(24) which gives us the formula�h(r) = 1V0 Z dr�id(r+ u(r)) exp(�ihr) = 1V0 Z dr�id(r) exp(�ihr + ihu(r))where in the last integral we shifted the region of integration to the position of unit cellin the ideal crystal. In the following we shall restrict ourselves by only the cases wherethe displacement of atoms is a slow function of the coordinate and it may be consideredas a constant inside the unit cell. This takes place, for example, in the region far from thecore of dislocation but this is not such in the core of dislocation. However, such regions8



where this condition does not meet, is usually very small. Considering exp(ihu(r)) as aconstant inside the unit cell we immediately obtain the relation�h(r) = �(id)h exp(ihu(r)) (26)This relation shows that the susceptibility of disturbed crystal lattice does not inuencethe incident beam but it leads to an additional phase shift in the di�racted beam so weobtain the inhomogeneous medium. For solving the task we shall use once again thegeometrical optics approach in the small angle approximation. In the two-beam case ofdi�raction we try the solution in the formE(r) = E0(r) exp(ik0r) + Eh(r) exp(ikhr) (27)where kh = k0 + h and the complex amplitudes E0(r) and Eh(r) are the slow functionsof the coordinates compared to exponent functions.Substituting this form of solution to the Maxwell's equation and integrating over theunit cell, as before, we obtain the set of equations for the slow functions onlyk0gradE0 = i2K2 [�0E0 + �h exp(�ihu(r))Eh]khgradEh = i2K2 [�h exp(ihu(r))E0 + (�0 � �)Eh] (28)where � = (k2h�K2)=K2 is a usual parameter of deviation from the Bragg condition andthe Fourier components of susceptibility relate to the ideal crystal lattice where the index(id) is omitted for the sake of writing convenience, �h is the Fourier component for thereciprocal lattice vector �h. The equation (28) was proposed for the �rst time by Takagiin a short article� S. Takagi, Acta Crystallogr., 1962, vol. 15, p. 311and is called now Takagi equations. Later the equations of such a type was used by Taupinfor calculating �rst topographic images of dislocations in the article� D. Taupin, Bull. Soc. Fr. Mineral. Crystallogr., 1964, vol. 87, p. 469.therefore sometimes the equations are called Takagi-Taupin equations.The Eqs.(28) are really very useful and powerful technique for calculating the imagesof di�erent crystal lattice defects. These have a clear physical meaning. In the two-beamcase of di�raction we must consider the two sets of rays - along the incident beam and alongthe di�racted beam. However, considering the trajectory along for the incident beam, forexample, we need to take into account a possibility of local crystal lattice to scatter thewave from the di�racted ray to the incident ray. Therefore the wave along the incidentray feels the inuence of waves along the di�racted ray which intersect the consideringpoint. The same takes place for the rays along the di�racted wave. In numerical computercalculating the images this picture is implemented really in the computer program. Inthe ideal crystal the processes of scattering from the incident ray to the di�racted rayand vice versa beam are the same for all points of the crystal volume. In the distortedcrystal lattice the processes of scattering is accompanied by the local phase shift in thewaves which leads to the inhomogeneous intensity of the waves at the exit surface of thecrystal. 9



The geometrical picture of scattering allows to draw the possible region of the crystalwhich contribute to given point on the exit surface. In the Laue case of di�raction thisregion is always �nite (see Fig.3(left)) while in the Bragg case the region is in�nite but themain contribution goes from the area close to given point (see Fig.3(right)). The integralform of the Takagi equations was derived in the paper� A. M. Afanasev, V. G. Kohn, Acta Crystallogr. 1971, vol. A27, p. 421.The integral form of equations is a partial solution of the equations because integralequations allow us to represent the wave �eld at the point of interest as a contribution ofwave �elds over the possible region. These solve also the problem of boundary conditionsin the case when the incident wave is inhomogeneous. Just this problem is of interest forus - what happens when the inhomogeneous wave falls on the perfect crystal.5. THE PROPAGATORS OF TWO-BEAM DIFFRACTIONThe Laue case is more simple one therefore it may be represented here in detail. Letus consider the crystal in the form of the plane parallel plate of thickness t. Let usintroduce the coordinates z along the normal to the surface and x along the surface in theplane of scattering which is determined by the vectors k0 and kh: The entrance surfacecorresponds to z = 0 while the exit surface corresponds to z = d: The incident wavehas the amplitude E0(x; 0) = A(x) at the entrance surface while the di�racted surfaceEh(x; 0) = 0. The task consists of �nding the equations for the wave �eld E0(x; d) andEh(x; d) at the exit surface. There are many ways to make a solution of the task. We mayuse the results of another topic of these lectures where the theory of X-ray plane wavedi�raction is presented. For this purpose let us use the linear property of the equationsand represent the known wave �eld A(x) as a Fourier integral over the plane wavesA(x) = Z dq2�A(q) exp(iqx); A(q) = Z dxA(x) exp(�iqx) (29)We may try the solution now in the formE0(x; d) = Z dq2�A(q) t(q; d) exp(iqx); Eh(x; d) = Z dq2�A(q) r(q; d) exp(iqx) (30)where the functions t(q; d) and r(q; d) are the transmission and reection amplitudes forthe plane wave with the wave vector k0 + qex where ex is a unit vector along the x-axis.The solution can be obtained from the known solution for the plane wave with the wavevector k0 through a simple replacement �0 by �0�2k0xq=K2 and � by �q = �+2hxq=K2:We restrict ourselves by the case of symmetrical geometry when k0z = khz and the crystalshaving an inversion centre when �h = �h: Using the results of pointed above topic wewrite the expressions for these amplitudes as followst(q; d) = F0F�(�xd) cos (sqBxd) + i �q2�hsq sin(sqBxd)! ;r(q; d) = iF0F�(�xd)sin(sqBxd)sq (31)10
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FIG. 3. The region of scattering (Borrmann delta) in the Laue case (left) and in the Braggcase (right) of X-ray di�ractionwhereF0 = exp( i��0� cos �B d); F�(x) = exp(iCx); C = ��2� sin �B ;sq = q1 + (�q=2�h)2; �q = �� 4 sin �BK q; B = ��h� sin �B ; xd = d tan �B: (32)Now the problem is reduced to the calculation of the integrals of Eq.(30). However,it is not possible because we don't know the explicit expression for the function A(q):Therefore instead of total solution we may use the property of Fourier integral and rep-resents the Fourier component of the product of two functions as a convolution of theFourier components of these functions.E0(x; d) = Z dx0P00(x� x0; d)A(x0); Eh(x; d) = Z dx0Ph0(x� x0; d)A(x0) (33)where the functions P00(x; t) and Ph0(x; t) are the two-beam di�raction propagators ofthe �eld through the crystal which is de�ned asP00(x; d) = Z dq2� t(q; d) exp(iqx); Ph0(x; d) = Z dq2� r(q; d) exp(iqx) (34)This way of calculation shows clearly that the crystal propagators are in fact theFourier transformation of the plane wave propagator over the transverse component ofwave vector. To obtain the analytical form of the propagator we need to calculated theintegrals. It is really possible and the results were presented for the �rst time in thepapers� A. Authier, D. Simon, Acta Crystallogr., 1968, vol. A24, p. 517.,� I. Sh. Slobodetskii, F. N. Chuchovskii, V. L. Indenbom,. Pis'ma v Zhurn. Exp. i Teor. Fiz., 1968, vol. 8, p. 90 (in Russian).In out notation the results look as follows 11



P00(x; d) = F0 "�(x� xd)� 12BF�(x� xd)sxd + xxd � xJ1 �Bqx2d � x2�# ;Ph0(x; d) = i2BF0F�(x� xd)J0 �Bqx2d � x2� : (35)Here J0(x) and J1(x) are the Bessel functions, �(x � xd) is the Dirac delta-function andthe propagator equals zero outside the region x2 < x2d:In the Bragg case the situation is more complicated because the exit surface for re-ected beam coincides with the entrance surface for the incident beam. Nevertheless,the problem was solved analytically in general case of asymmetrical di�raction and thincrystal including multiple reection from bottom side in the paper� A. M. Afanasev, V. G. Kohn, Acta Crystallogr. 1971, vol. A27, p. 421.Here we consider only symmetrical di�raction and �h = �h: In the case of thick crystalthe problem may be solved by Fourier transformation once again.Eh(x) = Z dq2�A(q) r(q) exp(iqx) = Z dx0Ph0(x� x0)A(x0) (36)where r(q) = i �hy +qy2 � �2h ; y = �0 � �2 � � cos �B� q (37)Here the branch of square root having the positive imaginary part is expected. Thepropagator equalsPh0(x) = Z dq2� r(q) exp(iqx) = i exp(iCx)J1(Bx)x �(x); (38)where C = �(�� 2�0)2� cos �B ; B = ��h� cos �B (39)and J1(x) is a Bessel function once again, �(x) is Heaviside step function which equalsunity if x > 0 and zero otherwise.The results we obtain show that if the inhomogeneous wave falls on the perfect crystalthen the inhomogeneous wave will reected or transmitted by the crystal. The correlationbetween the characters of inhomogeneity is determined by the propagator function and itis not so obvious. However, let us examine �rst what appears in the experiments.6. REVIEW OF FIRST RESULTS OF PHASE CONTRAST IMAGINGThe �rst experiment on X-Ray imaging was performed by R�ontgen who discoveredX-rays just obtaining the X-ray image of his wife hand. It was an absorption map image.The �rst phase shift image of non-crystalline object was obtained, probably, by Bonseand Hart in the middle of sixtieth in experiments with X-ray LLL interferometer. Thedirection of study with a collimator and an analyzer was opened by� E. Forster, K. Goetz and P. Zaumseil, Krist. Tech., 1980, vol. 15, p. 937.However, the systematic study of the possibilities of phase shift imaging is carried outonly in recent time. Below several groups are presented.12



FIG. 4. The �rst experimental setup of Somenkov and Shilshtein group (left) and the �rstresult of the y imaging (right)6.1 Refraction contrast in X-ray introscopyOne of the �rst group of new attack on the problem was V. A. Somenkov and S. Sh.Shilshtein group from "Kurchatov Institute" (Moscow, Russia). Other members of thisgroup are A. K. Tkalich, A. A. Manushkin, N. L. Mitrofanov, K. M. Podurets. The �rstresults were published in� Zhurn. Tech. Fiz. 1991, vol. 61, p. 197 (Sov.Phys.-Tech.Phys, 1991, 36, 1309).The approach is based on the angular analysis of radiation scattered by transparent(biological) object. Bragg case of di�raction is used for preparing the incident planewave as well as for an angular analysis of transmitted radiation. When an absorption issigni�cant in the object, the contrast becomes mixed, a refraction-absorption contrast.In a �rst work the simplest experimental set-up was used with Si (333) symmetricalreection and a scan by slit across the object when recording the image on the �lm (seeFig.4(left)). Fig.4(right) shows the comparison of pure absorption image of the y (with-out a second Bragg analyzer, top image) and refraction image (bottom image). Despiteof the poor quality of presented pictures (the originals were better) the higher sensitiv-ity of the refraction contrast is seen. Today the author have improved the experimentalimplementation of the method (see. Fig.5). The improvement consists of:(1) asymmetrical reection for preparing the incident plane wave,(2) two symmetrical Bragg reections of higher order (511) for an analysis of inclined13



rays owing to a refraction without the change of direction of the beam,(3) a use of most sensitive part of the reection curve at the boundary of the totalreection region.The authors see the reason of the contrast in the fact that the rays with di�erent di-rections are reected by analyzing system with di�erent powers. Therefore the sensitivityof the method depends on the degree of slope of the reection curve. To obtain the bettercontrast the analyzer should be installed at the edge of the reectivity maximum. Todaythe group is working on the �rst beamline of Kurchatov Institute synchrotron radiationsource. They are going to develop the centre of medical diagnostic of biological objectsincluding a human body.6.2 X-ray plane-wave topography observation of the phase contrast from anon-crystalline objectAnother group is working in X-ray laboratory of St. Petersburg in Russia. The authorsare V. N. Ingal and E. A. Beliaevskaya, the �rst results is published in� J. Phys. D: Appl. Phys. 1995, vol. 28, p. 2314.They use practically the same technique of imaging of noncrystalline objects by meansof local angular analysis of the transmitted beam. However, they use the Laue case ofdi�raction in the crystal-analyzer. This allows them to register simultaneously two imagesin transmitted beam and in reected beam. An incident coherent beam is prepared bytwo crystals monochromators in an asymmetrical Bragg di�raction. The experimental

FIG. 5. The improved experimental setup of Somenkov and Shilshtein group14



FIG. 6. The experimental setup of Ingal and Beliaevskayaarrangement is shown in Fig.6.The topographic images in the transmitted and reected beams of the analyzer werecalled Phase Dispersion Images (PDI). The X-ray tubes with Mo K� and Ag K� anodeswere used, the exposure time was about 20 min. The 220 asymmetrical di�raction was

FIG. 7. The image of aquarium �sh, top �gure is an absorption contrast, bottom �gure isPDI (phase dispersive image) 15



used in monochromators, and the asymmetry factors were b1 = 0:4 and b2 = 0:07 forMo K�: Under these conditions the authors estimate the longitudinal coherence lengthas 33� 3 �m and transverse coherence length as 175� 16 �m. The accurate theoreticalanalysis of the mechanism of image formation is absent in the paper (in these lectures itwill be done later). However, the authors give some qualitative estimation. The imageis formed due to a deviation of rays scattered by inhomogeneous object from the initialdirection. The deviation angle  = (�1 � �2) tan� where �1 and �2 are decrements ofrefractive indexes and � is the angle between the primary beam direction and the normalto the boundary between two media. High angular sensitive analyzer reveals these inho-mogeneous deviations. Therefore the contrast can be divided on "area contrast" where �is less apparently then �=2 and "boundary contrast" where � is close to �=2.To obtain the better contrast one has to use a Laue di�raction in an analyzer and tomove the working point from the maximum of reection curve to the point where the slopeof rocking curve has maximum value. One of the bright result of this group is the image ofaquarium �sh shown in Fig. 7. The maximum thickness of �sh was 5 mm. The top image(a) is obtained when the analyzer was moved out of the Bragg position. Therefore thisimage is angular insensitive and it shows only a shadow of high density parts of object(vertebral spine and ribs) due to stronger absorption The bottom image (b) is just thePDI (phase dispersion image) in reected beam. Here one can to distinguish the brain,pectoral �n and air bladder walls as well as the mouth and an inguested worm. Despitethe bright image the qualitative estimations are impossible because this technique todaydoes not allows to measure a phase shift accurately. Moreover, the character of imagedepends signi�cantly on the working point on the rocking curve.6.3 Demonstration of phase-contrast X-ray computed tomography using an X-rayinterferometerThe X-ray interferometry exists more than three decade after the �rst realization by� U. Bonse and M. Hart, Appl. Phys. Lett. 1965, vol. 6, p. 155.The LLL interferometer consists of three blocks of the same crystal having the parallelsurfaces. The Laue (transmission) case of di�raction is used. First block is called a splitter(S) because it divides one incident beam on two beams - transmitted and reected. Insymmetrical experimental scheme and at the exact Bragg position of the crystal theintensity of both waves are equal each other. The second crystal is called mirror (M)because here each beam is divided on two beams once again. In this process the doublereected beam becomes directed along the incident beam and it goes for intersection withthe beam reected in the second crystal only. The third crystal is called analyser (A)because it is placed just at the region of intersection of these two beams.First applications of this device were connected with the observation of the latticedeformations in the crystal-analyzer. Indeed, the two intersecting beams form a standingwave which has a period of the crystal lattice of �rst two blocks. If the crystal lattice ofthird block is slightly di�erent due to small rotation or stress then in some part of thecrystal the nodes of standing wave will coincide with the atom positions while in anotherparts these will be just between them. The reection and transmission in these regionswill be rather di�erent giving the picture of black white strips (moire pattern). However, if16



the crystal-analyzer will have a perfect crystal lattice then the transmission and reectionwill be homogeneous in space. Now to make the image one can place in the path of oneray some inhomogeneous object which will make shift of the phase inhomogeneously. Thesimplest object is a wedge. In this case the phase shift is homogeneous so we obtain theset of interference fringes of equal thickness and equal distance between them.The next step is to place in addition the inhomogeneous object which will distort theorder of initial fringes. The shift of fringes just will show directly the phase shift producedby object. This simple idea was realized only recently by A. Momose from Hitachi �rm(Japan). First results were published in� A. Momose, Nucl. Instr. Meth. 1995, vol. A352, p. 622.The method of direct phase shift measurement was used for the Phase-contrast X-raycomputed tomography (PCX-CT). Each measurement allows to obtain the map of phaseshift which is proportional to an integral over path of X-ray beam decrement of refractiveindex. So this map may be considered as a projection of object along the path of X-raybeam. Rotating the object one can obtain a set of such projections. Then the standardtechnique of computed tomography allows to restore the distribution of the electronicdensity inside the object.The experimental setup of Momose technique is shown in Fig.8. 220 di�raction andSilicon crystals were used for both the monochromator and the interferometer. Despitethe phase shift is visible directly on the interference pattern to obtain the accurate valueof the phase shift one needs to apply a Fourier Transformation Method which allows usto eliminate the carrier fringes.The simple method of measuring is restricted by the value of phase shift less than2�: However, the method can be extended to overcome this restriction if one is able tomeasure a set of fringes pattern each is obtained with the shift of the wedge on the valued=M compared to the initial position where d is a distance between fringes. The theoryis very simple therefore we consider it directly below. So we have the intensity whichspatial dependence consists of the fringes of carrier frequency f0: The middle value a(x; y)as well as the amplitude of oscillations b(x; y) (contrast) and phase shift '(x; y) producedby object are slow functions on the period d = 1=f0 (carrier fringe interval)I(x; y) = a(x; y) + b(x; y) cos (2�f0x+ '(x; y)) : (40)where we suppose the fringes to be parallel to y-axis. Let us represent the cosine functionthrough the exponentialsI(x; y) = a(x; y) + c(x; y) exp (2�if0x) + c�(x; y) exp (�2�if0x) : (41)where c(x; y) = 12b(x; y) exp [i'(x; y)] (42)is a slow complex function compared to exponential of carrier frequency.Now it is clear that the Fourier spectrum of such a function has a shape of three sharppeaks divided by relatively large distance between themIF (f; y) = aF (f; y) + cF (f � f0; y) + c�F (f + f0; y): (43)17



The left and right peaks, corresponding to second and third terms of Eq.( 43), just containthe information about the phase shift. Taking, for example, the right peak (the secondterm) and making the reverse Fourier transformation one then obtains the phase shiftdirectly from Eq.(42) as an imaginary part of log[c (x; y)]. This method is just restrictedby the value 2� of the phase shift.Another method allows to work with a set of patterns each of them is described bythe formula

FIG. 8. The experimental setup of Momose technique
18



I(x; y;N) = a(x; y) + b(x; y) cos�2�f0x + 2� NM + '(x; y)� : (44)The summation of all patterns with the weight exp(�2�iN=M) allows us to kill the middlevalue and the left peak of Fourier transformation. As a result we obtainMXN=1 I(x; y;N) exp��2�iNM � = 12Mb(x; y) exp [2�if0x + i'(x; y)] (45)Now we may extract the phase shift from the imaginary part of logarithm because thecarrier frequency is known. This method is more di�cult and in addition it is restrictedessentially by detector resolution. Fig.9 shows the raw data of experimental measurementwhen the object was a plastic sphere. The top �gure shows the results of experiment whenthe plastic sphere exposed in air. One can see the carrier interference fringes the shadowof the rod which keeps the object (at the right) and the shadow of the object itself. Onlya new set of interference fringes of very small distance appears in the centre of the objectshadow. The reason is that the phase shift produced by object is very large comparedto 2� and very quickly changes near the boundary of the sphere. Therefore the methoddescribed above is unapplicable for this object. In terms of Ingal and Beliaevskaya groupthis method is able to measure only the "area" image while the "boundary" image cannotbe measured.To solve the problem of strong refraction near the boundary the object was placedin water. This allows to decrease the di�erence of decrement of refractive index nearthe boundary. The bottom �gure shows the result of measurement in this case. Herethe object shadow disappears and instead one can clearly see the inhomogeneous shift ofcarrier interference fringes.

FIG. 9. The interference pattern of plastic sphere in air (left) and in water (right)19



FIG. 10. The experimental setup of Australian group6.4 Quantitative Phase Imaging Using Hard X RaysThe method of X-ray phase imaging which is based on traditional optical ideas ofstudying the inhomogeneous medium is developed recent years also in Australia. The�rst experimental result was presented by group of researches: K. A. Nugent, T. E.Gureyev, D. F. Cookson, D. Paganin, Z. Barnea from Melbourne in the publication� Phys. Rev. Lett., 1996, vol. 77, p. 2961.They use the experimental arrangement similar to set-up of in-line holography used bySnigirev's group at ESRF (see below). However, the method of registration of the inho-mogeneous intensity suppose the procedure of averaging over large enough area togetherwith a possibility to make a good quantitative recording (ion chamber with a pinhole infront).The theoretical foundation of the approach was developed in the main part by Gureyev(former Russian scientist from Russian Snigirev's group in Chernogolovka). The approachis based on the idea that the pure transparent object produces the inhomogeneous phaseshift of the wave which transforms to the inhomogeneous intensity distribution at thede�nite distance from the object. The latter (being represented in smoothed state) canbe described in an approximation of transport of intensity equation. This equation can beobtained directly from Maxwell's equation for a scalar wave �eld in the form (see above)E(x; y; z) = I1=2(x; y; z) expfikz + i'(x; y; z)g (46)where k = 2�=� is a wave number of X-rays. The intensity I(x; y; z) and the phase shift'(x; y; z) are assumed to be slowly varying functions obtained by means of some smoothingprocedure, for example. Under this condition the transport of intensity equation can bederived directly from the Maxwell's equation which has the formk@I(x; y; z)@z = �r? [I(x; y; z)r?'(x; y; z)] ; r? = ( @@x; @@y ) (47)which just determines the mechanism of transformation of the phase inhomogeneity tothe intensity inhomogeneity. 20



The method of solution of this equation is proposed and is tested on a model object asa commercial carbon electron microscope calibration grid with a period of 330 �m and of68�24 �m thickness. The experiment was performed with 16 keV X-rays at beam line 20A(Australian) at the Photon Factory (KEK, Tsukuba, Japan). The experimental set-up isshown in Fig.10. The divergence of X-ray beam was approximately 0.38 mrad horizontallyand 0.037 mrad vertically. Two 100 �m square aperture were placed to produce a uniformbeam with a square pro�le and to decrease the e�ective source size for increasing thespatial coherence. The initial experimental data (intensity) have a correct periodicity(see Fig.11 (left) ). To obtain the phase image from the intensity the procedure of solvingthe transport of intensity equation by means double Fourier transformation and �lteringthe data was used. The result of phase shift reconstruction is shown in Fig.11 (right). Theobtained quantity of the phase shift was compared with an independent determinationfrom the absorption of 8.05 keV X rays with a good agreement. The method is rathersimple and is in close connection with the ideas of holographic reconstruction under near�eld conditions (see below). The most fresh paper of this group has been arrived few daysago� D. Paganin, K. A. Nugent, Phys. Rev. Lett., 1998, vol. 80, p. 2586.All other references can be found in this paper.6.5 Phase Contrast Microimaging by Coherent High Energy SynchrotronRadiation in experimental set-up of in-line holographyThis approach is developed by A. Snigirev's group at beamline ID24 of ESRF whichincludes I. Snigireva, A. Souvorov, C. Raven, F. Legrand, V. Kohn, S. Kuznetsov and
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FIG. 11. The raw data of intensity distribution(left) and the reconstructed pro�le of phaseshift(right) 21



others. First results were published in:� ESRF Newsletters, 1995, June, No. 24, p. 23� Rev. Sci. Instrum., 1995, vol. 66, December, No. 12, p. 5486.Schematic display of the experimental set-up is shown in Fig.12 where a distance fromthe source to the object is from 30 to 60 m and the distance from the object to thehigh resolution spatial detector (CCD camera or a �lm) is varied from 0.2 to 2 m. Onlya monochromator is needed to provide a temporal coherence of the radiation while thespatial coherence is rather good taking into account that the size of source is only 30 �m.This scheme allows to obtain the images of small objects or small details of large objectof quite di�erent type in dependence on the distance from the object to the detector. Atvery small distance the image is formed by absorption contrast where only a shadowof high absorbing parts of object has smaller intensity. At small distance a boundarycontrast appears as a result of interference of strongly scattered rays at the boundary dueto refraction with the reference rays. This e�ect is a coherent e�ect and it leads to achange of intensity up to 100 per cent and higher. Therefore the boundaries of di�erentparts of the object becomes visible clearly even for pure transparent object. The authorsnamed such an image as outline image. The comparison of absorption image and outlineimage is shown in Fig.13 where an image of dry seaweed Valonia ventricosa at E = 20keV registered just after the sample (left) and at 5.5 cm distance (right). One can see thegreat di�erence of quality of images based on the phase shift and on the absorption. Theoutline image in this scheme is not a parasitic e�ect as in all schemes considered above:(1) with perfect crystals, (2) based on the interferometer or (3) using the transport ofintensity equation for the reconstruction. Just the outline imaging has a simplest natureand it is easy to understand. This technique allows to obtain the images of high quality.An an example, one can see in Fig.14 the outline image of knee of mosquito long leg. Thethickness of hairs is about 10 �m, however even the structure of hairs (inhomogeneousthickness along the hair) can be distinguished.
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FIG. 13. The comparison of absorption image of dry seaveed Valonia ventricosa (left) andoutline coherent image (right)As for "area contrast", it also can be measured. However, in this case the interpretationis not direct. In addition, the open character of this scheme leads to a situation when

FIG. 14. The outline image of knee of mosquito long leg23



just the area contrast gives, as a rule, the parasitic image, created by all objects onthe path of X-rays and not only by the sample. For example, in Fig.14 one can seethe inhomogeneous background caused by beryllium foil of inhomogeneous thickness atthe window of synchrotron radiation beam line. As it was demonstrated on series ofdi�erent objects the outline imaging allows to make the tomography reconstruction of theboundaries inside the object. The �rst results are published in� C. Raven, A. Snigirev, A. Koch, I. Snigireva, V. Kohn,. Proceedings of SPIE, 1997, vol. 3149, p. 140.The experimental scheme used in this technique is vary similar to the well known in-line(Gabor) holographic scheme used in optics with laser light source. However, the di�erencein 10�4 between the wave length value in visible light optics and X-rays optics does notallow to explore the methods of reconstruction of the phase from intensity which used invisible light optics. Therefore only the methods applicable to near �eld condition maybe used. One of them is just the method of equation of transport of intensity. However,there may be modi�cations. The theory will be considered in the next sections.7. THE THEORY OF PLANE WAVE IMAGINGLet us try now to understand theoretically what we see on the X-ray images of non-crystalline objects. All approaches presented above may be divided on three essentiallydi�erent directions which are based on the di�erent experimental equipments and there-fore have di�erent application domains. Let us call the �rst direction "imaging in theplane wave topography scheme" or more shortly "plane wave imaging", the second di-rection "interferometric imaging" and third direction "imaging in the in-line holographyscheme" or more simply "in-line imaging". All directions are developing today rapidly.However, there appeared only few theoretical works were some aspects of the problem areexamined. The complete understanding of all possibilities and restrictions of describedabove techniques are absent.The plane wave imaging scheme, in principle, does not demand a coherent sourceof X-rays because if one uses a quasi-monochromatic radiation of X-ray tube then themonochromator serves as a collimator which restricts the angular width �� of the inci-dent beam by the value �� = (��=�) tan �B according to the Bragg law where (��=�) isa relative width of the spectral line used in the experiment (usually about 2 �10�4 ). Con-ditionally we may consider the incident wave as a plane wave. The role of real divergenceof the incident wave is not studied up to now. However, as the �rst approximation it isgood to average the intensity over the angular width �� of the incident radiation. Theplane wave can be approximated by a set of parallel rays which go through the object.Owing to a refraction on the boundary between the media with di�erent refraction indexeach ray changes its direction of propagation. The angle of deviation is so small that thespace distribution of intensity cannot be resolved by conventional detectors. The Braggdi�raction in the crystal analyzer is just used for a registration of these small changes ofray direction.Such a simple interpretation of physical principles of plane wave imaging given usuallyby experimentators is inconvenient for the theory. First of all, it is clear that two-beamdi�raction cannot resolve the angular inclinations in the vertical plane normal to the24



scattering plane. The resolution arises only in the scattering plane containing the wavevectors of incident and di�racted waves. On the other hand, the accurate theoretical con-sideration must be performed in terms of inhomogeneous wave �eld and the propagatorsof the two-beam di�raction. This is the standard approach of X-ray topography of crystallattice defects. Today only two theoretical papers are published on this topic� V. A. Bushuev, V. N. Ingal, E. A. Beliaevskaya,. Kristallogra�a, 1996, vol. 41, p. 808 (in Russian)� T. E. Gureyev and S. W. Wilkins, Nuovo Cimento, 1997, vol. 19D, p. 545where just this approach was considered.Thus, let us assume �rst that the object is illuminated by the plane wave along thereference direction (we may call it the optical axis or z-axis). The wave �eld after theobject has the form (see above)E0(x; y; z1) = exp (i�(x; y)) exp (�M(x; y)) (48)where �(x; y) = 2�� Z z1z0 dz0 �(x; y; z0); M(x; y) = 2�� Z z1z0 dz0 �(x; y; z0): (49)Here � is an inhomogeneous decrement of refractive index which is proportional to thelocal electronic density of matter while � is an index of absorption. In general the wave�eld has variable the phase and the amplitude therefore the contrast is mixed: refraction-absorption contrast.When the distance from the object to the crystal-analyzer is small enough, we mayneglect the z-dependence of the �eld and assume that the same �eld falls on the entrancesurface of the crystal analyzer. The detector measures the wave �eld scattered by thecrystal-analyzer. The result will depend on the case of di�raction (Laue or Bragg) andon the type of the beam (transmitted or reected). Let us consider the reected beam.The problem may be formulated in terms of the propagator functions considered above.Taking into account the rotation of coordinate system at the crystal analyzer (the z-axisalong the normal to the surface) we have at the exit surface of the crystalEh(x; y) = Z dx0Ph0(x� x0; �) exp (i�(cx0; y)) exp (�M(cx0; y)) (50)where c = cos', ' is an angle of rotation of the z-axis, and the explicit expression forthe propagator depends on the case of di�raction (Laue or Bragg). We assume that thescattering plane is (x; z) plane. The parameter � = �2 sin 2�B��c shows in explicit formthe dependence of the propagator on the angular position of crystal-analyzer relative tothe exact Bragg position. The index c just points on the crystal.One can see that the y-coordinate enters in the formula as a parameter. This meansthat the crystal-analyzer can resolve the phase inhomogeneity along the y-axis only in thesense of y-dependence of x-axis inhomogeneity. Let us estimate the frame of applicabilityof "ray inclination" approximation. As it follows from the Eqs.(35) and (38) the spatialdependence of the propagator function is rather inhomogeneous. In the Bragg case thisregion does not depend on the crystal thickness (in the case of thick crystal) and can beestimated as not more than 25



�x = � cos �B�j�hj = Lexctg �B (51)where Lex is an extinction length of the plane wave theory. Let us assume that the realpart (�) and imaginary part (M) of the phase of wave �eld (	 = �+iM) can be expandedin the Fourier series	(cx0) = 	(cx) + d	dx c(x0 � x) + d2	2dx2 c2(x0 � x)2 + � � �; d	dx c = 2�� c��x (52)where the parameter c = sin �B (' = �=2��B) in the Bragg case and ��x is the deviationof the ray at x-coordinate in the positive direction of the x-axis.Let us assume moreover that we can neglect the second and higher derivatives of thephase inside the region of width �x (see Eq.(51),.namely,d2	dx2 c2�2x + � � � < 1 (53)Then the integral of the propagator with the exponential can be calculated analyticallyand we obtain the result asEh(x; y) = exp (i�(cx; y)) exp (�M(cx; y)) r(��c ���x); (54)where r(��) = i �hy +qy2 � �2h ; y = �0 + sin 2�B �� (55)is a usual reection amplitude of plane wave. However, now it depends on the local raydeviation through the local dependence on the �rst derivative of the phase shift. We notethat the gradient of absorption also enters here as an imaginary part of the ��x value:The intensity registered by position sensitive detector equalsIh(x; y;��c) = exp (�2M(cx; y)) jr(��c ���x)j2 (56)So we see that the crystal-analyzers cannot reveal the local phase shift but it can revealthe local phase shift gradient through the high sensitivity of the reectivity of the crystal-analyzer. In the case of �nite angular width of the incident radiation the registered reallyintensity isJh(x; y;��c) =  Xs Z d�0Ws(�0)!�1Xs Z d�0I(s)h (x; y;��c + �0)Ws(�0) (57)where Ws(�) is the function describing an angular divergence of the incident beam andsummation is assumed on two polarization states.The condition (53) means that we may apply the plane wave theory (the ray approx-imation) only in the analysis of the "area contrast" with a slow change of the refractiveindex. However, even in this case the interpretation of the image and the reconstructionof the phase is not so simple. First of all, the image depends signi�cantly on the base26



angular point on the "rocking curve" of the crystal analyzer. The most suitable point isat the side of the reectivity maximum. Then the di�erent values of the ray directionwill be represented as a map (only in x-direction) of di�erent gray levels. It is known (seeFig.15(left)) that the angular width of such a region of high angular sensitivity on therocking curve is limited. Therefore all regions where the gradient of the phase leads tothe angular shift which exceeds this region will be shown in distorted form.On the other hand, the regions where the condition (53) is not ful�lled will be alsoshown in the image. However, the origin of this image will be di�erent from the picture ofray inclination distribution. It can be analyzed qualitatively or calculated quantitativelyusing the accurate expression (50). In the paper of Gureyev and Wilkins two anotherlimiting cases are considered. First, when the phase shift is a rapid function of x and,second, the stepwise character of the pure phase shift (without an absorption). Despitethe fact that the approximate analytical formulas can be obtained the understanding stayson the low level. So the problem here is only under solution.Mechanism of the contrast formation in the Laue case of di�raction is more complicatedbecause the propagator has more complex structure. In addition it depends on the crystalthickness. As it was shown above the propagator has the structure of the product of pureexponential function and the Bessel function J0(x); namely,Ph0(x; d; �) = i2B exp� i�2� sin �B [(2�0 � �)xd + �x]� J0 �Bqx2d � x2� ; (58)where xd = d tan �B; B = ��h� sin �B ; (59)
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FIG. 15. Reectivity of Silicon crystal analyzer for X-rays of Mo K� energy (� = 0:709 �Aforthree cases: (left) 511 reection, Bragg case; (middle) 422 reection, Laue case, crystal thicknessd = 564 �; (right) 422 reection, Laue case, d = 2135 �m. The incident beam is assumed to besigma polarized and having the angular divergence 0.2 �rad and the Gaussian shape of angulardistribution 27



d is the crystal thickness and the symmetrical case of di�raction is assumed. Let usconsider two limiting cases of crystal analyzers thickness. In the case of thin crystal wemay neglect the absorption of X-rays in the crystal. Then the Bessel function has themaximum value for zero argument when x = �xd. Taking into account the expression(50) we may conclude that the rays which undergo only one reection gives the maximumcontribution, i. e., for the point x on the exit surface the small regions near the pointsx0 = x� xd (60)on the entrance surface are the more essential. This e�ect is well known in the theory ofX-ray topography as the "margin e�ect".Once again we may assume that the complex phase shift produced by the object canbe expanded in the Fourier series and only the �rst derivative of the phase is essential.However, now the region �x is the basis of the Borrmann delta �x = 2xd and it dependson the crystal thickness. The amplitude of the reected beam equals in this approximationEh(x; y) = exp (i�(cx; y)) exp (�M(cx; y)) r(��c +��x; d) (61)where r(��; d) = i exp� i�xd2� sin �B (2�0 � �)� sin(s�Bxd)s� ;s� = q1 + (�=2�h)2; � = �2 sin 2�B ��: (62)The angular properties of thin crystal analyzer in the Laue case is di�erent from the Braggcase (see Fig.15(middle)). The region of maximum has no sharp boundaries. However,the additional extinction oscillations appears there due to an existence of two waves withslightly di�erent velocity. The slope of the rocking curve at the boundary of the centralpeak may be high enough that increases the angular sensitivity. The absence of largeregion of approximately constant reectivity allows to avoid the ar�facts. On the otherhand, the interpretation of the image for objects having parts with di�erent level of thedensity inhomogeneity becomes also not simple. The margin e�ect may be used but upto now it is not made.In the case of thick crystal when the absorption is essential the Bessel function becomesgrowing function and it reaches the maximum value for maximum argument, thereforefor the point x on the exit surface the region near the point x0 = x on the entrancesurface is essential and the width �x is the decreasing function of the crystal thickness.For rather thick crystal the image reveal local �rst and second derivatives of the phase.If the second derivative is small then the approximation of ray inclination can be alsoused. The angular dependence in this case is not so sharp (see Fig.15(right)) however itis still suitable. For my opinion the thick crystal analyzer must be considered because itleads to high local sensitivity. However in the paper of Bushuev et al., cited above onlythe case of thin crystal is accepted and an analysis of all possibilities of the method isabsent. Only the numerical computer simulation of some particular cases is made. Thecomparison of the experimental results of Ingal and Beliaevskaya with the calculationsshows good coincidence. Nevertheless, this case needs in the following development of thetheory. 28



8. THE THEORY OF IN-LINE IMAGING8.1 The propagator and the problem of coherenceThe experimental set-up of in-line imaging (see Fig.12) can be examined in two steps.On the �rst step we may assume that the source of the radiation has no size (the pointsource) which produces the spherical wave. The existence of the monochromator allowsus to consider the monochromatic spherical wave. Because the distances along the opticalaxis (z-axis) is very large compared to transverse distances the small angle approximationcan be used with a good accuracy. At the second step we need to take into account thereal size of the source and to estimate how it inuence the image. As it will be shownbelow, in the case of in-line imaging the pattern of point source image has to be averagedover the projection of source size on the image plane. For this purpose we shall considerthe arbitrary coordinates (xs; ys) of the point source. The wave �eld in the plane (x; y)normal to the optical axis just after the object can be written asE(x; y; zo) = E0(x� xs; y � ys; zos) exp (i�(x; y)) exp (�M(x; y)) (63)where E0(x; y; z) = 1z exp iK "z + x2 + y22z #! = exp(iKz)S(x; z)S(y; z) (64)is the spherical wave in a small angle approximation, K = 2�=�, zo is the absolutecoordinate of the plane just after the object, zos = zo�zs is the distance source-to-object,and S(x; z) is the partial transverse component of the spherical wave which is de�ned asS(x; z) = 1pz exp iK x22z! : (65)Let us consider the situation when the distance from the object to the detector zdo =zd � zo is signi�cant in the sense that the approximation of simple transition of wave�eld to the detector plane and even the approximation of geometrical optics is not valid.In this case we need to solve the Maxwell's equation in empty space between the objectand the detector. Taking into account the Huygens-Fresnel principle the solution may beexpressed in terms of Kirchho� integral over the total plane (x; y) after the object normalto the optical axisE(xd; yd; zd) = Z dx Z dy Pt(xd � x; yd � y; zdo)E0(x; y; zo) (66)where Pt(x; y; z) is the propagator of x; y-distribution of the wave �eld along the z-axis.The accurate propagator is proportional to the spherical wave. However we can use a smallangle approximation once again. It allows us to express separately x and y dependenceof the propagator as followsPt(x; y; z) = exp(iKz)P (x; z)P (y; z); (67)where 29



P (x; z) = 1pi�z exp iK x22z! = 1pi�S(x; z) (68)In general case the integral 66 will transform the phase shift distribution �(x; y) pro-duced by object in the new wave �eld distribution which will lead to the inhomogeneousintensity distribution - the value which can be measured by the detector. The characterof this transformation of the phase to the intensity depends on the properties of the prop-agator. The propagator of in-line scheme is essentially two-dimensional one as againstthe plane wave scheme considered above. However, to simplify the problem we consider�rst the model object which gives only one-dimensional distribution of the phase shift,for example, only along the x-axis. Such an object - the round Boron �ber with Tungstenround core - really was investigated intensively in in-line scheme. Since the object changesthe wave �eld only in the x-direction we can calculate the integral over y directly. Theresult looks as a convolution of two propagators which equals the propagator once againbut on the total distancepi� Z dyP (yd � y; zdo)P (y � ys; zos) = pi�P (yd � ys; zds) (69)where zds = zdo+zos = zd�zs is the source-to-detector distance. This result is well knownand it has a clear physical sense from the point of view of Huygens-Fresnel principle. Thuswe obtain the expressionE(xd; yd; zd) = exp(iKzds)S(yd � ys; zds) Z dxP (xd � x; zdo)S(x� xs; zos)F (x) (70)where F (x) = exp(i	(x)); 	(x) = �(x) + iM(x) (71)is one-dimensional disturbance of the wave �eld produced by object.It is convenient to rewrite the Eq.(70) in another form containing only one multiplierdepending on x before the object function. By simple calculation one has to verify therelation P (xd � x; zdo)S(x� xs; zos) = S(xd � xs; zds)G(x; xds; zdo; zos) (72)whereG(x; xds; zdo; zos) = � zdsi�zdozos�1=2 exp�� iK2zdo �2xxds � zdszosx2 � zoszdsx2ds�� (73)and xds = xd + xs zdozos (74)This relation allows us to write the relative disturbance of the wave �eld from the objectas follows E(xd; yd; zd)E0(xd � xs; yd � ys; zds) = Z dxG(x; xds; ; zdo; zos)F (x) (75)30



The expression for the relative wave �eld is convenient despite of the fact that it isnot a simple convolution because the propagator G depends only on one variable xdsinstead of two variables xd and xs. This means that in a small angle approximation eachpoint of the source produces the same image of the object which only becomes shiftedon the de�nite distance. According to the Eq.(74) the shift of point on the source fromthe origin on the distance xs leads to a shift of the di�raction pattern as a whole onthe distance �xszdo=zos. Thus, there is no necessity to calculate the total di�ractionpattern for each point of source because each point produces the same di�raction patternbeing only shifted. Therefore we may calculate the interference fringes only for the middlepoint of the source and afterwards we need to average the resulting intensity over the areahaving a width w0s = wszdo=zos where ws is the source size (see Fig.16). It is obvious thatthe fringes with the distance between them pf less than w0s will disappear or become muchless visible. On the other hand, the fringes with the distance pf � w0s will be practicallyundisturbed by the source size. It is easy to understand that the same situation takesplace for y coordinate when the object is inhomogeneous in y-direction.Such a simple analysis allows us to formulate the main recipe for increasing the spatialcoherence of in-line experimental scheme. Together with decreasing the source size it isnecessary to increase the distance source-to-object compared to the distance object-to-detector. It is of interest to estimate the characteristics of the ESRF (European Syn-chrotron Radiation Facility) beam lines. The source size of the undulator ws � 30 �m,the source-to-object distance zos � 40 m. With these parameters we calculate that for theobject-to-detector distance zdo = 1 m, the fringes having the distance pf > 1 �m betweenthem can be distinguished.
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8.2 The conditions of image formationKeeping in mind the recipe how to take into account the source size we shall considerbelow the point source at xs = 0: The position sensitive detector can measure the intensityof radiation at each point xd therefore we are interested in the valueI(xd) = ����Z dxG(x; xd; ; zdo; zos)F (x)����2 (76)This value is dimensionless and it describes the intensity of the image normalized onthe intensity of spherical wave at the total distance source-to-object zds: expression. Tosimplify the problem for the sake of better understanding the characteristic features of thein-line imaging let us assume that the distance source-to-object zos so much larger than thedistance object-to-detector zdo that we can use the approximation zos=zds � zds=zos � 1:In this case only one distance object-to-detector zdo is essential in Eq.(76) therefore wemay omit the subscript and use z notation for this value. Bearing in mind that we needthe intensity we may also omit in the propagator the phase factor which cannot changethe intensity. The expression we need now takes the formI(xd) = jFi(xd)j2; Fi(xd) = Z dxP (xd � x; z)F (x) (77)where P (x; z) is the propagator which is de�ned by Eq.(68) while the function Fi(xd) canbe called image amplitude for the object function F (z):To understand how the distance object-to-detector z is able to make visible the phaseshift let us examine the results of computer calculation of the Eq.(77) for the real modelobject: round boron �ber of radius r = 10�m and 15 keV energy of X-rays (� = 0:83�A),
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FIG. 17. Holograms of Boron �ber of 10 �m radius with 15 keV energy of X-rays at di�erentdistances from the object. On the same axes the phase shift produced by �ber is shown.32



shown in Fig.17. The object is very small and absorption equals practically zero. Thephase shift is also not large, the maximum value is only �: At short distance z = 1 cmthe boundaries of the �ber are shown only on the image. At longer distance z = 21cm the additional small oscillations appear while the boundary disturbance of intensitydistribution becomes rather signi�cant giving a contrast about 100 per cent. At longerdistance the pattern in outside parts of the �ber shadow approximately repeats the patternof shorter distance but becomes wider (the positions of maximums and minimums areproportional approximately to pz ). The region of �ber shadow shows the contrast whichdepends on z in another way and it is approximately similar to the image produced bythe slit of di�erent sizes.The evaluation of the interference patterns at di�erent distances allows us to selectthree regions:(1) near �eld condition (outline imaging) where �z << r2;(2) intermediate region (Fresnel di�raction) �z � r2;(3) far �eld condition (Fraunhofer di�raction) �z >> r2.It is known from the usual optics that the radius of area in transverse plane inside whichthe phase of spherical wave of wavelength � at the distance z is less than � equals p�z:It is just the radius of �rst Fresnel zone. Therefore we may formulate these three regionsin terms of comparison the radius of object with the radius of Fresnel zone. Under thenear �eld conditions the object covers many Fresnel zones, in case of Fresnel di�raction -only few Fresnel zones, in the case of Fraunhofer di�raction the size of the object is muchless than the �rst Fresnel zone.Now let us derive these conditions directly from the Eq.(77). First of all, let us verifythat the propagator is the normalized function independently on the value of z:Z dxP (x; z) = 1pi�z Z dx exp i� x2�z! = 1: (78)This integral is a particular case of more general table integralZ 1�1 dx exp(�i�x + ix2) =  i� !1=2 exp �i�24! (79)where � and  are arbitrary complex values. I like to call this integral the main tool ofthe theoretical optics because a lot of problems can be solved using this integral.Let us consider for the sake of simplicity the pure transparent object. Adding and sub-tracting the unity to F (x) and using the normalization condition Eq.(78) the expressionfor the image amplitude can be written asFi(xd) = 1 + 1pi�z exp i� x2d�z! Z r�r dx exp �i� "2xdx�z � x2�z #! [F (x)� 1] (80)where the integral in the second term is carried out only inside the region where the objectchanges the phase of wave �eld and the propagator is written in explicit form.The �rst question which arises in the problem of phase contrast imaging is about asensitivity of the technique. If we analyze a very small object or very slightly scattering33



object which produces the small phase shift '(x) we can expand the exponential in theTaylor series after that the image amplitude takes the formFi(xd) � 1 + 12a(xd)'0; I(xd) � 1 + '0Re a(xd) (81)where a(xd) = 2pi�z exp i� x2d�z!Z r�r dx exp �i� "2xdx�z � x2�z #! '(x)'0 (82)and '0 is the maximum phase shift. The maximum contrast C = �'0 where � is amaximum value of the real part of the integral a(xd) which is close to unity for theparameters of interest (it follows from the computer calculations). On the other hand,the phase '0 = 2��d=� where � is the decrement of refractive index which has well knowndependence on � as � = �2 and d is the diameter of the object (�ber).Taking all this into account we obtain a simple formula for the contrastC = 2��d� (83)which shows the approximate dependence on the wavelength of the radiation. For exam-ple, for X-rays of E = 10 keV (� = 1:24 �A) and for carbon based �ber 0.1 �m thicknessthe contrast of 2% may be obtained that is experimentally detectable. This estimationwas obtained in the paper� A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov and I.Schelokov,. Rev. Sci. Instrum. 1995, vol. 66, p. 5486.where the �rst experimental results were demonstrated on the phase contrast microimag-ing.For larger objects the character of the image depends signi�cantly on the additionalterm in the phase of propagator �x2=�z: Just this term allows to select three regionspointed above. When this part of the phase is small inside the total region of integration,we can neglect it. Afterwards the contrast image amplitude Fi(xd)�1 becomes the Fourierimage of the contrast object function F (x)�1 multiplied by the exponential exp (i�x2d=�z),namely, Fi(xd) = 1 + exp i� x2d�z! fi(xd); I(xd) = jFi(xd)j2 (84)where fi(xd) = 1pi�z Z r�r dx exp��2�i�z xdx� [F (x)� 1] (85)It is the case of Fraunhofer di�raction. In the outside parts of the object xd >> r theFourier image fi(xd) is a slow function and the main features of contrast are de�ned byjust the exponential. This fact explains the law pz in the positions of maximums.On the other hand, when this part of the phase changes rapidly the integral can beestimated by the stationary phase technique. The Method of Stationary Phase (MSP)is a very powerful technique in theoretical optics. It is a foundation of the geometrical34



optics which allows to obtain a solution of many optical problems by simple considerationof ray trajectories. This method in a pure sense allows to estimate approximately theintegral Q(q) = Z dx exp (i'(q; x)) (86)where the phase '(q; x) are slow function of the variable x but it takes very large values.In this case the integrand is strongly oscillating function, therefore the contribution of allregions of integration is very small except only the regions where the phase '(q; x) haszero �rst derivative. Let us assume, for the sake of simplicity, that we have only one sucha point x0(q) which is a solution of the equationd'(q; x)dx = 0 (87)This point is just the point of stationary phase. Near this point we may expand the phaseas the Taylor series '(x) � '(x0) + 12  d2'dx2!x=x0 (x� x0)2 + � � � (88)Now taking into account that only small region near x0 contributes to the integral we canconsider the integral with approximate expression of the phase Eq.(88). However, sinceother regions don't contribute to the integral we may conserve in�nite limits. Then theintegral can be calculated analytically using once again the Eq.(79).Z dx exp (i'(q; x)) � (2�i)1=2  d2'(x0)dx2 !�1=2 exp[i'(x0)]; x0 = x0(q): (89)Let us consider once again the region xd >> r: In this case the integral without phaseshift in the approximation of MSP gives zero contribution while the object of homogeneousstructure and approximately round shape, like a �ber, gives only one contribution fromone stationary phase point x0 which is de�ned from the transcendental equationx0 = xd � �z2� d�(x0)dx ; F (x0) = exp (i�(x0)) (90)As a result we obtainFi(xd) = 1 + "1 + �z2� d2�(x0)dx2 #�1 exp� i��z (xd � x0)2�F (x0) (91)The obtained formulas just described the image formation under the near �eld condition.However, it is not clear directly.To make clear what physical picture is described by these formulas let us consider theparticular case of round �ber once again. In this case�(x) = �4�� �pr2 � x2 (92)35



where � is the decrement of refractive index (positive) and expression is valid only forx < r. The equation for the stationary phase point now looks asx0 = xd � 2z�x0qr2 � x20When xd > r and z� is small value compared to r; the root of this equation is close to rso we may write x0 = r � " where " is a small value which can be evaluated in the linearapproximation. As a resultx0 = r0@1� 2 z�xd � r!21A � r; �z2� d2�(x0)dx2 = (xd � r)34r(z�)2 (93)Therefore even for small enough radius of �ber we obtain the image amplitude asFi(xd) � 1 + 4r(z�)2[4r(z�)2 + (xd � r)3] exp� i��z (xd � r)2� (94)which shows the contrast. The contrast is the larger the smaller the distance from theedge of the �ber (xd � r). Therefore it is just the outline imaging under the near �eldcondition. For example, the relative region with a contrast larger than 10 per cent maybe estimated as b = (xd � r)r < 4:5 z�r !2=3 (95)For example, for z = 1 cm, r = 10�m, � = 10�6 we obtain b = 0:04:The expression (94) of the image amplitude has a clear physical sense from the viewof geometrical optics. Moreover, it can be accurately obtained in the same form usingthe geometrical optics approach. Since we consider the relative amplitude the �rst termcorresponds to the ray which go directly from the point source to the point of imagexd. The second term corresponds to the ray which go near the edge of �ber. This rayundergoes the refraction on the boundary of �ber two times: �rst when it comes in the�ber, second when it go out of the �ber. As a result of refraction the direction of theray becomes inclined and the ray come in the same point of image xd being previously atthe position of the edge of �ber r (see Fig.2(right) ). Therefore the phase shift along theadditional path of second ray compared to the path of �rst ray can be easily calculated.As for the relative amplitude of the second ray we need to consider the density of rays withapproximately the same points of arrival xd. It is not simple even in the geometrical optics.The method of stationary phase allows to make this calculation analytically giving thesame result. The intermediate case of Fresnel di�raction is most di�cult for the analyticalanalysis. However, since it is between the clear physically limiting cases it is naturally toexpect the intermediate behaviour of the image. It is seen from the computer calculationpresented in the Fig.17.As it is known, the in-line optical scheme is used in the laser optics (coherent) notonly for an imaging of objects but also for a registration of holograms which then can beused for a reconstruction of initial wave �eld at the object and showing the 3-dimensional36



image of the object. Because the X-rays are not visible we are interested only in the taskof initial wave �eld reconstruction including the phase shift �(x) from the intensity ofthe image. Being realized this possibility allows to begin a new branch of tomographyof transparent object based of the refraction e�ect - refraction tomography. Therefore itis of interest to analyze the possible approaches to the solution of this problem. First ofall, this task is solved directly in the case of interferometric imaging. Below we considerthe possibilities of in-line imaging for a recovering the phase shift. We begin from thestandard laser optics scheme.9. THE PROBLEM OF THE PHASE RETRIEVAL FROM INTENSITYMEASUREMENT IN IN-LINE HOLOGRAPHIC SCHEMEAs it is known the procedure of recording the holograms supposes the existence of wellknown reference beam and interference of this reference beam with the beam scatteredby the object. In the in-line scheme such a situation arises only partially in the regionsof image plane outside of the image shadow. When object has small size and far �eldconditions are realized the region of object shadow is small compared to the total region ofthe object image. This was just the idea of Gabor to use the in-line scheme for recordingof the holograms. Below we �rst consider this case.9.1 Standard object reconstruction algorithms for far-�eld conditionsLet us consider once again the Eq.(77) in slightly di�erent notationFh(xd) = Z dxP (xd � x; z)Fo(x) = Pz(xd � x) � Fo(x); H(xd) = jFh(xd)j2 (96)where Fo(x) is the complex function which describes the wave �eld disturbance producedby the object, Fh(xd) is the complex function which describes the wave �eld disturbanceat the distance z from the object. The detector measures the intensity distribution of this�eld which we shall call the hologram H(xd): The amplitude Fh(xd) is connected withthe amplitude Fo(x) through the convolution with the propagator function Pz(xd�x): Toshorten the notation we shall use the sign � for the convolution.The propagator is de�ned by the Eq.(68). The Fourier image of the propagator is wellknown. It can be calculated using the main optical tool - the Eq.(79) and equalspz(q) = Z dx exp(�iqx)Pz(x) = exp(�i�z4�q2) (97)Now taking into account the property of the Fourier transformation that the Fourier imageof the convolution of two functions equals the product of Fourier images of multipliers andthat the exponential contains the distance z in the numerator, it is easy to understandthe following properties of the propagator:Pz1(x1 � x) � Pz2(x� x2) = Pz1+z2(x1 � x2)Pz1(x1 � x) � P �z2(x� x2) = Pz1�z2(x1 � x2)Pz1(x1 � x) � 1(x) = 1(x1) (98)P0(x1 � x) = �(x1 � x)37



Here the �rst relation was used above (see Eq.(69)), the third relation is the statementthat the propagator is a nozmalized function (see Eq.(69)), the notation 1(x) means theconstant function relative to the variable x. The last relation reads that the propagatorat zero distance has the property of the Dirac delta-function �(x).Using the properties of the propagator pointed above we may represent the hologramH(xd) in terms of the contrast function at the object co(x) = Fo(x)� 1 as followsH(xd) = 1 + Pz(xd � x) � co(x) + P �z (xd � x) � c�o(x) + jPz(xd � x) � co(x)j2 (99)The optical reconstruction technique proposes to illuminate the recorded hologram by thesame reference beam and to search the image of the object at the same distance whichwas used for recording the hologram. However if the object is transparent we cannot �ndit by looking. The computer allows to reproduce the real experimental situation and itcan �nd the phase shift of the transparent object. Therefore the computed holographyreconstruction algorithm considered in di�erent optical papers of last decade� L. Onural, P. D. Scott, Optic. Engeen. 1987, vol. 26., p. 1124.� K. A. Nugent, Opt. Commun., 1990, vol. 78, p. 1124� G. Koren, F. Polack, D. Joyeux, J. Opt. Soc. Amer., 1993,deals with the integral of back projection of the hologram contrastR0(x) = P �z (x� xd) � [H(xp)� 1] (100)Substituting the expression (99) for the hologram and using the properties of the propa-gator (98) we arrive to the formulaR0(x) = co(x) + P �2z(x� x1)c�o(x1) + P �z (x� xd) � jPz(xd � x1) � co(x1)j2 (101)What we obtain?. The function contains three terms which are called the objectfunction (in our notation the contrast of object), a twin-image and an intermodulationterm. Under the far �eld condition (Fraunhofer di�raction) when �z >> r2 where nowr is the characteristic size of the object, the size of the image is much larger r and the�rst term just corresponds to focusing the wave �eld in the small spot of object image(focused object image). The second term corresponds to the wave �eld of object image attwice distance, therefore it is defocused twin-image, while the third term has a propertyof smoothed and small in value distribution which looks like a background of the allpicture. Such properties of di�erent terms allow us to extract the object image with agood accuracy.However, even under the far-�eld condition the function R0(x) is not an object functionin the integral sense because a pure transparent object leads to the relationZ dxR0(x) = 1(x) � P �z (x� xd) � [H(xp)� 1] = Z dxp[H(xp)� 1] = 0 (102)The last integral in the Eq.(102) shows simply that the transparent object cannot changethe integral intensity. Such a relation is absent for the contrast of the real object function.Therefore the standard reconstruction technique is based on the focusing of the wave �eldto the object with simultaneous defocusing of all other parts of the image. When thefar-�eld condition is not met the Eq.(101) can be used for the numerical iterative process38



when the all terms are taken into account but the �rst term is used only on the �rstiteration. However, under the near-�eld condition when the distance z is small all threeterm become focused because the propagator Pz(x1 � x) � �(x1 � x) In this case theintegral equation 101 is unacceptable completely for a computer calculations.Among the other numerical algorithms one may consider the Gerchberg-Saxton algo-rithm which was proposed for the �rst time for a task of phase retrieval from Fouriertransformations in� R. W. Gerchberg, W. O. Saxton, Optik, 1972, vol. 35, p. 237.The modi�ed algorithm considers back and forward propagations of any wave �eld fromthe hologram to the object and from the object to the hologram. This is one of thedi�erent solutions of the standard task of the phase retrieval of complex wave�eld fromtwo intensity measurement. We have the relationsco(x) = P �z (x� xd) � ch(xd); co(x) = Fo(x)� 1;ch(xd) = Pz(xd � x) � co(x); ch(xd) = Fh(xd)� 1: (103)and we know the intensitiesH(xd) = jFh(xd)j2 and for the transparent object, for example,jFo(x)j2 = 1: If the object absorbs the radiation the intensity just after the object also canbe measured. Starting with arbitrary phase pro�le (for example, zero) for Fh(xd) withknown modulus, we obtain Fo(x) with wrong modulus. We replace the modulus by unityand keep the phase and calculate the function Fh(xd) once again, replace the modulusand so on.This may be veri�ed directly that under far-�eld condition this process quickly con-verges to the solution. The properties of this process in general case can be studied onlyby computer experiments because the analytical theory is absent. The practice showsthat this process converges successfully also in the case when the object covers a limitednumber of Fresnel zone (Fresnel di�raction) and the outer part of the image recorded iscomparable in size with the object shadow. Under the near-�eld condition this algorithmdoes not work.9.2 The problem of the phase retrieval under the near-�eld conditionAs it was shown above, under the near-�eld condition the image of the transparentobject is very di�erent from the real object (see Fig.17). The interference fringes with asmall distance between them are localized near the object boundaries while the other partof the object stay practically invisible. It is very di�cult to resolve the interference fringesbecause any detector has a �nite spatial resolution. On the other hand, the intensitychange in the internal parts of the image is so small that it is di�cult to resolve themdue to �nite sensitivity of the detector. Nevertheless, in recent years several approacheswere elaborated for the solution of this problem. The analysis of these approaches leadsto the conclusion that these are di�erent only in details while the physical nature is thesame. Nevertheless di�erent approaches involve di�erent mathematics and it is necessaryto analyze them separately.Let us consider �rst the approach which is based on the convolution (96)39



Fh(xd) = Z dxP (xd � x; z)Fo(x) (104)and the property of the propagator. This approach was developed in the paper� V. G. Kohn, Phys. Scripta, 1997, vol. 56, p. 14The main idea is the following. Since the propagator under the near-�eld condition is asigni�cantly local function the image of the object at each point is de�ned by the region ofthe object projection which is close to this point, and if the rays are only slightly deviatedby the object then the change of density of the rays just may be measured in the intensity.The knowledge of the change of rays density allows to recover the angle of their deviation,and the knowledge of the angle allows to recover the phase itself.The mathematical implementation of this idea looks as follows. We represent theobject function as exponential and use the Taylor expansion of the argument near thepoint of imageFo(x) = exp [�(x)] ; �(x) � �(xd) + �0(xd)(x� xd) + 12�00(xd)(x� xd)2 (105)where the argument in general is a complex function� = � + i�; �0 = d�dx; �00 = d2�dx2 (106)Substituting this approximation to the integral, using the explicit form of the propagatorand making the replacement of the variable x�xd = x0 ! x we obtain instead of Eq.(104)the integral in the formFh(xd) � 1pi�z Z dx exp��(xd) + �0(xd)x+ 12[�00(xd) + i2��z ]x2� (107)Despite the fact that the integrand is a strongly oscillating function we have no problemhere because the integral is calculated analytically using the main optical tool - Eq.(79)Fh(xd) = exp[�(x)] �  1� i�z2��00(xd)!�1=2 exp �(xd) + i�z4� [�0(xd)]2[1� i�z2��00(xd)]! (108)To proceed the calculation further we need to assume that the object satisfy the nextcondition '0 = Re �z2�i�00(xd) = �z2��00(xd) << 1 (109)where '0 has a sense of the phase which arises in object inside the �rst Fresnel zone dueto only second derivative of the real phase. Under this assumption we may use the Taylorexpansion up to second degree. As a result, we obtain the approximate local relationbetween the logarithms of the object and image functions as follows� = � + i�z4��00 + i�z4� [�0]2  1 + i�z2��00!� (�z4� )2[�00]2 = � + i (110)40



We are interested in the real part of this relation which is connected with the imageintensity. This equation represents by itself the di�erential equation for the phase of theobject function. It is convenient to write this equation in terms of variablex0(x) = �z2� d�(x)dx (111)and in the form which is convenient for the iterationsx00 = 2(�� �)� "2(�02�00 + 12�002)� 2�0x0 + �00x20 + 12x0201� 2�0x0 ; " = �z2� : (112)This is the main equation of the algorithm of the phase retrieval. It is convenient for theiterations because does not contain the fast oscillating exponential.At the �rst step of calculation one deals with the equationx00 = 2(� � �)which in usual notation looks as followsd2�(x)dx2 = �Kz ln H (x)I(x) ! = �Kz ln 1 + H (x)� I(x)I(x) ! � � KI(x; z) dI(x; z)dz (113)where I(x) = jFo(x)j2: The last approximate relation allows us to understand the connec-tion with other approaches.Thus, the Eq.(112) in a good tool for making the calculation on the phase retrieval.However, this equation is valid only under the assumption (109) which means that we mayretrieve the phase only in the "area image" case. In the "boundary image" regions it is notworking. The main reason of this fact is that the approach suppose that number of raysin each part of image is the same at an object and only the density of rays (the distancebetween them) can change due to the refraction. However, the degree of ray inclinationat the boundary and in internal part of image may di�er signi�cantly for thick enoughobjects of approximately round form. If the distance z is so small that this conditionsatis�es for all image that internal part will practically invisible and only very narrowregion near the boundary will be seen. In addition the distance turns out to be verysmall. In a real situation with imaging the object like the �ber the condition (109) is notmet. The rays intersect each other and the strong interference takes place which leads tostrong oscillations of intensity in the hologram (see Fig.18(left)).To avoid this complexity in the paper pointed above the proposal is considered toaverage the real intensity of the hologram over these oscillations. This operation allows tokill the interference between the rays but conserve the middle density of the rays. Afterthat the intensity distribution becomes suitable for a calculation and the phase retrieval.Evidently, the procedure of averaging does not allow to reproduce the sharp boundariesand these are retrieved as smoothed. However, in general the method works successfullyas it is shown in the Fig.18(right). As for the objects without the sharp boundaries orwhen the jump of susceptibily values is not large, the method allows to retrieve themwithout an averaging. 41



For the sake of simplicity we consider only the one-dimensional object like a �ber.The two-dimensional objects like a sphere also can be considered. In this case only themathematics becomes more di�cult but the ideas are the same. It was done in paper� K. A. Nugent, T. E. Gureyev, D. Cookson, D. Paganin, Z. Barnea,. Phys. Rev. Lett. 1996, vol. 77, p. 2961.However it is useful to consider the two-dimensional case from other position - directMaxwell's equation. In Section 1 when we consider the geometrical optics we neglectthe higher derivative of the phase. Now let us go out of the geometrical optics andconsider once again the accurate equation (4) for the intensity but in empty space whenthe susceptibility equals zerograd�(r) � gradI(r) + grad2�(r) � I(r) = 0 (114)
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Now let us assume that the phase of the wave�eld is described by the formula�(r) = Kz + '(r?) (115)Then from the accurate Eq.(114) we immediately obtain�KdI(r?; z)dz = r?[I(r?; z)r?'(r?)] (116)This equation is accurate if the Eq.(115) is accurate. However, the Eq.(115) can beaccurate only with r?' = 0 because (r�)2 = K2: Nevertheless even when r?' 6= 0 thisequation may be used for the analysis of the transport of intensity due to inhomogeneoustransverse distribution of the phase. This equation was considered in the paper� T. E. Gureyev, A. Roberts, K. A. Nugent,. J. Opt. Soc. Amer., 1995, vol. A12, p. 1932.for a phase retrieval problem when, on the other hand, was proposed to determine thephase distribution of the wave �eld from known intensity distribution along the opticalaxis. As usual, it is enough to use two points on the z-axis.In the particular case when we can neglect the transverse derivatives of intensitycompared to the same for the phase (it is really so for the transparent object and near-�eld condition without the ray interference) then the equation may be rewritten in theform �KdI(r?; z)dz = I(r?; z)r2?'(r?) (117)This equation is a two-dimensional equation. In the one-dimensional case it coincideswith the Eq.(113). The method using the two-dimensional propagator allows to writethe more complicated equation for iterations where the Eq.(117) will be a start approx-imation. However even in the frame of start approximation the problem is not simplemathematically.
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