
Multiple di�raction of X-Rays inmany-crystal systemsVictor KohnRussian Research Centre "Kurchatov Institute", 123182 Moscow, Russiadate: June, 1998; �le: hl-muld2.psThe document is the part of Hamburg lectures"Selected topics in the theory of coherent scattering of X-rays"Contents:1. Introduction2. Coplanar multiple di�raction devices. General theory3. Coplanar multiple di�raction. Speci�c examples3.1 Grae�-Bonse interferometer3.2 Three-wave monochromator3.3 Four-wave monochromator4. The theory of multiple di�raction in multilayer crystal systems5. Possible interesting phenomena1. INTRODUCTIONThe theoretical investigation of the multiple di�raction of X-Ray plane waves in onecrystal plate is of interest from the fundamental point of view. However, from a practicalpoint of view the many-crystal systems are always of interest. First of all, it is so becausethe plane wave does not exist in nature. Secondly, for managing di�erent devices likemonochromators, collimator or reectors usually one crystal plate is not enough. Theexperimental setup in which the phenomenon of multiple di�raction is studied, naturally,may demand to use the same multiple di�raction case for collimating the incident beam.If the multiple di�raction occurs in several independent crystals then the calculation mustbe performed successively in each crystal taking into account that the properties of thebeam may be changed by preceding crystals. There are two di�erent simple experimentalarrangements which realize the many-crystal system.First one deals with the di�erent blocks of the same crystal cut out on the same basisbut having di�erent orientation of boundaries in di�erent blocks which are divided inspace. The example of such a system is shown in Fig.1 (left). Usually in this case acoplanar di�raction (energy dependent) is convenient. The blocks have completely thesame crystal lattice but independent boundaries.The second setup consists of the multilayer crystal system where the neighboringlayers have the boundaries in common and all boundaries are parallel to each other.1



FIG. 1. Monochromator of three-beam coplanar di�raction (left) and three-beam di�ractionin multilayer crystal systems (right)However, the crystal lattice parameters may be di�erent in di�erent layers. When thecrystal lattice parameters di�er only slightly the multiple di�raction occurs in each layerbut under slightly di�erent conditions. However, in some layers where the crystal latticeparameters di�er strongly the multiple di�raction is absent, however, many beams travelthrough these layers if these are inside the multilayer system. Such a device is shownschematically in Fig.1 (right).In this topic we consider the equations which are necessary for calculating the systempointed above in addition to the calculating scheme for one crystal plate considered in aseparate topic. The case of coplanar di�raction is accompanied a series of examples wherethe results of calculation of properties of speci�c possible systems are presented. The caseof multilayer system is developed weakly up to now, so it is future science. Therefore onlythe equations are presented here.2. COPLANAR MULTIPLE DIFFRACTION DEVICES. GENERAL THEORY.The device of the �rst kind is of practical interest in the case of coplanar di�ractionwhen all the beams lie at the same plane and this plane may be parallel to the basisof the device. The interferometer or the monochromator can be considered. In a cubiccrystal like Silicon the critical wavelength �c of coplanar three-beam di�raction on thereciprocal lattice vectors h1 and h2 having the indexes h1; k1; l1 and h2; k2; l2; is de�nedby the relation �c = 4� sin'jh1 � h2j = 2as1� AB (1)where ' is an angle between the vectors h1 and h2; andA = (h1h2 + k1k2 + l1l2)2(h21 + k21 + l21)(h22 + k22 + l22) ; B = (h1 � h2)2 + (k1 � k2)2 + (l1 � l2)2 (2)2



For example, in the three-beam case on (440) and (044) reections in the Silicon crystal(a = 5:43 �A) the critical wavelength �c = 2�=Kc = 1:663 �A that is very close to the NiK� uorescent radiation of X-ray tube. In the case involving (880) and (488) reciprocallattice vectors �c = 2�=Kc = 0:859 �A, that is very close to the 57Fe nuclear resonance(� = 0:860 �A).In the coplanar case the polarization vectors e�m; as chosen according to Fig. 6 ofthe topic describing the di�raction in one crystal (we will call it later as topic I.), areequal to each other and normal to the scattering plane which is a plane of vectors sm ande�m = [sm � e�m]; m = 0; 1; 2. In the approximation when only the E1-transition (electricdipole interaction) is taken into account the kinematical scattering matrix can be dividedon two independent matrixes separately for waves of �-polarization and of �-polarizationbecause (e�me�m0) = 0 for any m;m0 . However, for making a computer calculation itis not necessary to take this into account in explicit form. The separation will occurautomatically.Let the incident plane wave for the �rst block have the amplitude B(1)is (normalizedalong the surface of the crystal), and the wave vector Ki, namely,E(1)i = �1=2i1 B(1)is esi exp(iKir):The unit vector normal to the surface is denoted n1 and we use a general notation mk =(smnk). Here Ki = Kbsi + qi where si is the unit vector of direction which satis�esthe multiple geometrical Bragg conditions while qi is a vector of small deviation of theincident wave vector from the reference wave vector both angular and in magnitude(Kbsi + hm � hi)2 = K2b ; qi = Kb(��1ie�i +��2ie�i +��!si): (3)The di�racted along sj plane wave in air will beE(2)j = �1=2j1 B(2)js esj exp(iKjr); B(2)js =M ss(1)ji (qi)B(1)is ; (4)HereM ss(1)ji (qi) is the element of the dynamical scattering matrix in which the polarizationindex is shown in explicit form. The index (1) shows that the di�raction takes place inthe �rst block having the internal normal to the entrance surface n1:The wave vector of outgoing plane wave isKj = Kbsj + qj; qj = qi � Kb2j1�j(qi)n1 (5)The correspondence between qj and qi has been explained previously (see the solution ofthe task in one crystal plate in topic I.). When this wave falls on the second block it excitesthe same set of di�racted waves, but under condition of another surface orientation. Letthe internal normal to the second surface be n2 and we are interested in outgoing planewave along the direction sk: Then the necessary formulas can be written similarly to thepreceding case, namely, E(3)k = �1=2k2 B(3)ks esk exp(iKkr) with the amplitude and the wavevector which are de�ned as followsB(3)ks =M ss(2)kj (qj)B(2)js ; Kk = Kbsk + qk; qk = qj � Kb2k2�k(qj)n2 (6)3



We note that in calculating the second reection the three-beam di�raction task issolved under condition that the wave along sj is the incident wave while the wave along siis the di�racted wave. However, we may use the same order of reciprocal lattice vectorsthat leads to the same matrix of kinematical scattering amplitude gss0mm0 of Eq.(46) in topicI. However the total kinematical scattering matrix Gss0mm0(qj) becomes di�erent because itcontains �m(qj) instead of �m(qi) and m2 instead of m1:The third block of the monochromator, for example, may scatter the wave along skto the wave along si; namely, E0i = �1=2i3 B0isesi exp(iK 0ir) which will be approximatelyparallel to the initial wave and will have the same polarization. However the amplitudeof "monochromatized" wave will beB0is =M ss(3)ik (qk)M ss(2)kj (qj)M ss(1)ji (qi)Bis (7)while the wave vectorK 0i = Kbsi + q0i; q0i = qk � Kb2i3�i(qk)n3 (8)One may introduce the "transmissivity" of the monochromator as P s00 = B00s=B0s: Thetransmissivity is a function of angular and frequency deviations of initial beam or the samecharacteristics of the transmitted wave through the de�nition q0i = Kb(��01ie�i +��02e�i +��!si) and because the q0i vector is connected with qi vector. Despite the fact that theanalytical formulas may be rather cumbersome the computer calculation of general caseof geometry along the drawn above scheme is rather simple.We note that the connection between the incoming deviation vector qi and the out-going deviation vector qj in each reection may be expressed in terms of the transitionmatrix bTji which describes the connection as a product of the matrix and the vector0B@ ��1j��2j��! 1CA = bTji � 0B@��1i��2i��! 1CA (9)In general case the explicit form of the transition matrix follows from Eqs.(59), (60) oftopic I and may be written as followsbTji = 0BBB@ (n[e�i �e�j ])(nsj) (n[e�i �e�j ])(nsj) (ne�j )+(n[si�e�j ])(nsj)(n[e�j �e�i ])(nsj) (n[e�j �e�i ])(nsj) (ne�j )+(n[e�j �si])(nsj)0 0 1 1CCCA : (10)The usage of transition matrixes allows us to describe the parameter of deviation fromthe Bragg condition for each reection in terms of incident deviation vector and to drawthe Du Mond diagram for each particular case. In case of coplanar di�raction when thenormal to the surface lies in the scattering plane we may simplify further the matrixbTji = 0BB@ 1 0 00 (nsi)(nsj) (ne�j )�(ne�i )(nsj)0 0 1 1CCA (11)4



The method described above may be used in case of more reections. Since the two-beam di�raction is a particular case of many-beam di�raction these formulas are validfor two-beam monochromator as well. However in case of two-beam di�raction one hasa possibility to develop further the analytical analysis. In case of many-beam di�ractionthe complete solution of the problem is based on the computer calculations. The basicfeatures of the formulation presented above was developed in article� V. G. Kohn, Phys. Status Solidi (a), 1979, vol. 54, p. 375Below we shall consider in detail several particular cases.3. COPLANAR MULTIPLE DIFFRACTION. SPECIFIC EXAMPLES.3.1 Grae�-Bonse interferometerIn 1977 Grae� and Bonse have proposed the new type of interferometer in the paper� W. Grae�, U. Bonse, Z. Phys. B, 1977, vol. 27, p. 19The interferometer uses the coplanar (440); (044) three-beam di�raction in Silicon for awavelength of the radiation �c = 1:663 �A which is close to Ni K� uorescent radiation.Fig.2 (left) shows the direction of di�erent beams together with the index m of the beamsand the vectors sm and e�m in this case. The interferometer has �ve blocks which arethe di�erent parts of the same crystal. The arrangement of blocks and the path of theinterfering beams are shown in Fig.2 (right). The �rst block divides the incident beamnumber 1 on two beams simultaneously owing to two reections on the atomic planeswhich corresponds to the reciprocal lattice vectors (440) and (044): These beams have
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1-2-1-3-11-3-1-2-1FIG. 2. Directions and polarizations of the waves in coplanar (400),(044) three-beam di�rac-tion (left) and the ray trajectories in the Grae�-Bonse interferometer (right)5
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FIG. 3. Two-beam transmissivity map for Grae�-Bonse interferometer similar to Du Monddiagramindexes 2 and 3. Then both the right and the left beam go on symmetrical trajectorieswhere only one reection is used among the two possible reections. Finally the beamsmeet each other on the opposite side of the �rst block and after fourth reection thewave �eld becomes a superposition of the wave �elds of two beams. The right partcorresponds to the chain 1-2-1-3-1 while the left part corresponds to the chain 1-3-1-2-1.If the interfering waves have di�erent phases in space across the beams then the resultingintensity will show the oscillating behavior which is usually called interference fringes.The advantage of such the devices is that the necessity to adjust the di�erent blocksis absent. The usage of the Bragg geometry promises, generally speaking, the high reec-tivity because the decrease of the intensity due to an absorption is minimal. In addition,the thick blocks can be used which is convenient from the technological point of view.However, this arrangement has the disadvantage just owing to the same reasons. Firstof all, it is the well known property of the di�raction in the Bragg geometry that thereal angular region of the reectivity maximum is shifted from the region followed fromthe kinematical Bragg condition. In other words, the maximum of reectivity occurs at�nite values of the parameters ��2; ��! which may be di�erent in di�erent reections.The same crystal lattice can provide the automatic ful�llment of the kinematical Braggcondition only. Therefore one needs in good luck to satisfy the dynamical Bragg conditionsimultaneously in all blocks because one has no the possibility to �ne adjust the di�erentblocks as in the case of separate crystals.It is clear now that we have no the instrument for changing the transmissivity ofsuch the device. We can only calculate how much transmissivity we may obtain for suchan arrangement using the multiple di�raction theory described above. There may bedi�erent levels of accuracy of such a calculation. The simplest estimation of transmissivityis obtained when one takes into account the two-beam regions of reectivity maximum ofeach crystal. Let us consider the transition from i-th beam to j-th beam with i > 0 and6



j < 0. For each polarization state we can separate two equations from the whole set ofequations "Bm = Pm0 Gmm0Bm0 obtained in the topic I, namely,."Bi = GiiBi +GijBj"Bj = GjiBi +GjjBj (12)and the region of reectivity maximum is described by the equation(Gii �Gjj)2 + 4GijGji < 0 (13)A substitution of the explicit form of the matrix elementsGmm0 = K(mm0)1=2 [��m�mm0 + gmm0 ] (14)obtained in topic I to this condition leads to the next formula for the value of parameter�j(i) which describes the deviation from the Bragg condition with i-th beam as an incidentone and j-th beam as a reected one at the boundaries of the reectivity maximum
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FIG. 4. The transmissivity of the Grae�-Bonse interferometer in the energy - angle coortinateplane, 3D-sight (left) and the same as a map of levels (right). The black marks the region withf > 0:035 7



1-3-2-1 1-2-3-1FIG. 5. The ray trajectories in the Gabrielyan-Kohn monochromator�j(i)lim it = ��0  1 + jjji !� 2 (eiej)s jjji p�h�h = A(a)ji ��2i + A(e)ji ��! (15)On the other hand, the angle ��2i can be expressed in terms of angular deviation of theincident beam for the �rst block (incoming beam) using the transition matrix of Eq.(11).The result of such an estimation is shown on Fig.3 for � and � polarization statesseparately. The width of strips in case of �-polarization is less than one of �-polarizationowing to non-unity polarization factor (eiej). The map of such a type is similar to thewell known Du Mond diagram of the theory of two-beam monochromators. However, incase of three-beam di�raction in each block the reectivity maximum may have di�erentshape and, in addition, the total reection may be absent because the part of the intensityis brought by second reecting beam. Therefore the accurate three-beam calculation isnecessary to obtain the real transmissivity distribution. The results of such a calculationin case of the Grae�-Bonse interferometer is shown in Fig.4 (left) as a quasi 3D picture for� and � polarizations separately. As shown at the �gure the reectivity is not complete ineach reection. As a result, the maximum value of transmissivity is not high - only aboutthree per cent. The angular and energy dependences becomes rather complicated. Thecalculation presented here was ful�lled by author of these notes and it takes into accountthe absorption of X-rays. In the original article of Grae� and Bonse (see above a citation)have presented the results of calculation when the absorption was neglected. In this casethe maximum value was six per cent that is twice larger. The comparison shows that theabsorption cannot be neglected.On the other hand, the region of the transmissivity maximum is symmetrical in termsof ��2 axis. It is necessary condition for observing the interference fringes that the bothshoulders of the interferometer would have the same region of transmissivity maximum.8
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FIG. 6. Two-beam transmissivity map for Gabrielyan-Kohn monochromator similar to DuMond diagramThe form of presentation of Fig.4 (left) is not convenient to analyze this property. Thisis why the Fig.4 (right) shows the same distribution as a map of levels. This form ofpresentation is good enough to analyze the position of singular points.3.2 Three-wave monochromatorAs was pointed out above we need in the intersection of dynamical regions of reectivitymaximums for each crystal block of the device to obtain the maximum transmissivity.From this point of view the scheme having three blocks instead of four blocks, where oneof the blocks has a surface perpendicular to two others may be preferential. Such a deviceas a monochromator was proposed in 1980 by Gabrielyan and Kohn in the paper� R. Z. Gabrielyan, V. G. Kohn, Phys. Status Solidi, (a), 1980, vol. 59, p. 697.The ray paths inside such a device which correspond to a channel 1-3-2-1 and 1-2-3-1 areshown in Fig.5. One can see the reection 3-2 of path 1-3-2-1 is symmetrical and in thiscase the beam 1 goes along the surface. For our purpose we may exclude this beam fromthe consideration and consider this reection as two-beam reection. Therefore we obtaina good two-beam reectivity in one of reections. In addition the region of reectivitymaximum becomes shifted from the origin on the axis of angle. This leads to larger valuesof reectivity in other reectionsJust owing to a good luck in meeting the dynamical regions of reectivity maximumsthis device has much more value of the transmissivity maximum. Similar to the preced-ing analysis the Fig.6 shows the rough estimation of the region where we may expectthe maximum of the reectivity. The Fig.7 shows the results of accurate calculation oftransmissivity in this case as a three dimensional surface and as a map of levels. One cansee the maximum reaches 70 per cent. However, the region of maximum corresponds topositive values of ��2 shifted from the origin and therefore it is not symmetrical. The9



other ray path 1-2-3-1 would have the transmissivity maximum in the region of negative��2: As a result, the interference fringes will appear in the initial state of the interferom-eter which will mask all extra phase disturbances. To exclude this e�ect one may use thewedge in one of the shoulder of the interferometer.3.3 Four-wave monochromator.From the point of view of M�ossbauer e�ect the wavelength � = 0:860 �A (the energy�h! = 14:41 keV) is of interest which corresponds to nuclear resonant radiation of 57Fenucleus. It is turned out that in Silicon crystal lattice having crystal lattice parametera = 5:43 �A, the four-wave coplanar case (440; 848, 048) corresponds to �c = 0:859 �A whichis just very close to the necessary wavelength. Therefore I decide to analyze this case usingthe same approach and software which was used in preceding consideration. This resultis new and it is not published elsewhere. The Fig.8 shows the direction of rays andpolarization vectors in this case. One can see that the rays with numbers 2 and 3 as wellas the rays with numbers 1 and 4 have the angle of the 90�. Therefore no one ray cannot be
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FIG. 7. The transmissivity of the Garielyan-Kohn monochromator in the energy - anglecoortinate plane, 3D-sight (left) and the same as a map of levels (right). The black marks theregion with f > 0:6 10
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2-3-4-2

FIG. 8. Directions and polarizations of the waves in the coplanar (400),(848),(048 four-beamdi�raction (left) and the ray trajectories in the four-beam monochromator (right)normal to the entrance surface of the crystal. The scheme of the possible monochromatormay be as shown in Fig.9 which uses the 2-4-3-2 ray path. The Fig.10 shows the two-beam regions of reectivity maximum as it was explained in analysis the Grae�-Bonseinterferometer. Contrary to preceding cases here each crystal has independent region andthe match of these regions exists only approximately. In addition the map for �-polarizedradiation has zero thickness line for 3-2 transition because the polarizations of these rayscannot interact with each other.
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FIG. 9. Two-beam transmissivity map for the four-beam monochromator similar to DuMond diagram
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Bearing in mind such an information it is di�cult to expect rather high value oftransmissivity of this device. However, the accurate calculation shown in Fig.10 (left)allows to conclude that at least �-polarized radiation can reach six per cent transmissivitythat is larger than in case of Grae�-Bonse interferometer. The structure of the maximum isunusual and consists of two separate regions. One of them is thick enough while another isthin. The Fig.10 (right) shows the same distribution as a map of levels where this propertyis seen rather well. It is of interest to note that the �-polarized radiation also has a �nitetrasmissivity. The reason of this fact is one of the property of multiple di�raction to excitethe forbidden two-beam reections through the interaction with other rays. This e�ect isnot small when the conditions of dynamical di�raction becomes ful�lled.As it was pointed out above in using the monocrystal monochromator having severalblocks one has no a possibility to perform a �ne adjustment of angular position of theblocks to match the dynamical Bragg conditions in all the blocks simultaneously. However,the proper choice of the orientation of the entrance surface of the blocks can solve thisproblem in reasonable limits. It is seen clearly from the comparison of the two di�erentthree-beam devices considered above. Probably, it is possible to make an optimizationthe four-beam monochromator in such a way. This work is not made up to now.
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FIG. 10. The transmissivity of the four-beam monochromator in the energy - angle coorti-nate plane, 3D-sight (left) and the same as a map of levels (right). The black marks the regionwith f > 0:05 12



4. THE THEORY OF MULTIPLE DIFFRACTION IN MULTILAYERCRYSTAL SYSTEMThe multilayer crystal system presents by itself the another relatively simple systemwhere the all crystal plates (layers) have the surfaces which is parallel to each other.These surfaces can be represented by the unit vector of internal normal n: The atomiccomposition of each layer will be di�erent as well as crystal lattice parameters. We willassume only that some of the layers have almost the same crystal lattice parameters, sothat the multiple di�raction is realized on the same reciprocal lattice vectors. Practicallysuch a system may be managed by heteroepitaxial growth of the di�erent layers on asubstrate under di�erent conditions.The problem of calculating the parameters of multiple di�raction in such a systemnaturally is divided on two stages. At the �rst stage we may calculate the unknownwaves outgoing from each layer from the incoming waves to the layer. It is not necessaryto know the incoming waves themselves because we may calculate only the dynamicalscattering matrixes of each layer on the same set of reciprocal lattice vectors. How to dothis is described in the topic I. However, for a complete solution of the problem we need tosolve the self-consistent task because the outgoing waves from one layer become incomingwaves for another layer. One of ways of solving this self-consistent problem is based on therecurrent relations. These recurrent relation are similar to the Parratt recurrent relationin the theory of grazing incidence multilayer systems (multilayer mirrors). However, incase of multiple di�raction these relations turn out to be much more complicated.To described the method of solution we shall use the notation developed for one crystal
DL RB

DB RL

DL’ RB’

DB’ RL’

(d)

+ + +  . . .

(c)

+ + +  . . .

(b)

+ + +  . . .

(a)

+ + +  . . .

FIG. 11. The scheme showing a relation between incoming and outgoing waves at di�erentboundaries of two-layer system (left) and the schemes showing the multiple scattering processesbetween layers (right) 13



plate, namely, the index L will denote all transmitted waves (m > 0) and all eigenvalueswith "00j > 0 while the index B will denote all reected waves (m < 0) and all eigenvalueswith "00j < 0: Let us isolate the subsystem consisting of the k upper layers and the (k+1)-thupper layer. The (k+1)-th layer is described by the dynamical scattering matrix M (k+1)ijwhere i; j = L;B. We may describe the system of k upper layers by the matrix W (k)ij . Weassume that these matrixes are known. The problem is to determine the matrix W (k+1)ijfor the system of (k+1) layers. The latter de�nes the relations between the known wavesDL; DB and the unknown waves RL; RB while the matrix M (k+1)ij de�nes the relationsbetween D0L; DB and R0L; RB: On the other hand, the matrix W (k)ij de�nes the relationsbetween DL; D0B and R0L; RB:It is easy to understand examining the Fig.11 (left) thatD0L = R0L; D0B = R0B (16)On the other hand, the known matrixes allows us to write directly the relationsR0L = W (k)LL �DL +W (k)LB �D0B (17)RB = W (k)BL �DL +W (k)BB �D0B (18)for k upper layers system andRL =M (k+1)LL �D0L +M (k+1)LB �DB (19)R0B =M (k+1)BL �D0L +M (k+1)BB �DB (20)The our task is to �nd the direct relations between RL; RB and DL; DB using theabove written formulas. It is a relatively simple algebraic problem. First of all, we �ndfrom the equations (17) and (20)R0L = (ILL �W (k)LB �M (k+1)BL )�1 � (W (k)LL �DL +W (k)LB �M (k+1)BB �DB)R0B = (IBB �M (k+1)BL �W (k)LB)�1 � (M (k+1)BL �W (k)LL �DL +M (k+1)BB �DB) (21)Using these relations we �nd �nallyRL =W (k+1)LL �DL +W (k+1)LB �DBRB =W (k+1)BL �DL +W (k+1)BB �DB (22)where W (k+1)LL =M (k+1)LL � (ILL �W (k)LB �M (k+1)BL )�1 �W (k)LLW (k+1)LB =M (k+1)LB +M (k+1)LL � (ILL �W (k)LB �M (k+1)BL )�1 �W (k)LB �M (k+1)BBW (k+1)BL =W (k)BL +W (k)BB � (IBB �M (k+1)BL �W (k)LB)�1 �M (k+1)BL �W (k)LL (23)W (k+1)BB =W (k)BB � (IBB �M (k+1)BL �W (k)LB)�1 �M (k+1)BBHere ILL and IBB are identity matrixes of appropriate dimensions. The formulas (23) arethe required recurrent relations. These allow us to calculate the total dynamical scattering14



matrix of the system containing N layers by means of calculating the dynamical scatteringmatrixes of each layer and then successively applying the recurrent relation N-1 times with1+2, (1+2)+3, ..., (1+2+...+[N-1])+N. The approach presented above was developed byauthor in the article� V. G. Kohn, J. Moscow Phys. Soc., 1991, vol. 1, p. 425The physical meaning of the formulas (23) becomes clear if we expand the multiplicativeinverse matrixes in power series. This allows us to represent the formulas as the sumof processes of multiple reection and transmission of the waves in the layers. Theseprocesses are shown schematically in Fig.11 (right) for the LL (a), BL (b), LB (c) andBB (d) scattering geometries. The method of summing the series expansion can give alsothe equivalent result in a somewhat di�erent form. For instanceW (k+1)BL =W (k)BL +W (k)BB �M (k+1)BL � (ILL �W (k)LB �M (k+1)BL )�1 �W (k)LL : (24)If the (k+1)-th layer if very thick (substrate), then only this matrix is of interest and wecan employ the approximation of Eq.(70) of topic I for M (k+1)BL .To understand better the recurrent relations we may bear in mind that these mustwork in the two-beam di�raction case as well. In this case the matrixes are reduced tovalues and the next notation is usually employed MLL = t; MBL = r; MLB = r; MBB = t:Now the formulas (23) may be written asTk+1 = tk+1Tk1� rk+1Rk ; T k+1 = tk+1T k1� rk+1Rk ;Rk+1 = Rk + rk+1TkT k1� rk+1Rk ; Rk+1 = rk + Rktk+1tk+11� rk+1Rk : (25)In the problem of epitaxial layered system on a thick substrate or in the case ofgrazing incidence multilayer mirror or in case of crystal under the condition of temperaturegradient near the surface it is convenient to use the recurrent relations from bottom totop of the system and only the reectivity is of interest. The corresponding formula forthe two-beam di�raction case may be obtained from the above written formula by simplereplacement rk+1 by Rk and so on. As a result, we obtain the formula which connectsthe reectivity of system of (k+1) layers with the reectivity of system of k layers whichdepends only on the parameters of (k + 1)-th layer as followsRk+1 = rk+1 + tk+1tk+1Rk1� rk+1Rk (26)The formula of such a type can be obtained in case of multiple di�raction by replacementof r by MBL; R by WBL and so on. The interesting particular case of multilayer systemis a multilayer superlattice when one can select the layers with the same properties whichrepeat themselves periodically. In this case the parameters of layer does not depend onthe index of layer and the recurrent relation has the more simple formRk+1 = r + ttRk1� rRk : (27)15



It is of interest that this relation has an analytical solution as was shown by author inthe article� V. G. Kohn, Phys. Status Solidi (b), 1995, vol. 187, p. 61.This analytical solution is expressed through the Chebyshev's polynomials and may bewritten in the form closed to the expression of reectivity amplitude of two-beam dynam-ical di�raction with generalized scattering amplitudes instead of �0; �h.5. POSSIBLE INTERESTING PHENOMENAThe formulas obtained above allow to solve many di�erent problems of multiple dy-namical scattering and to consider di�erent multilayer systems. One of the interestingphenomenon arises in two-layer system under the three beam di�raction. It occurs whenone Bragg condition is satis�ed well while another Bragg condition is satis�ed only ap-proximately. Then we obtain the situation when one of two reected beams is strongwhile the second beam has a small amplitude. It is clear that the weak reection cannotinuence the interaction of the strong waves. On the other hand, the angular dependenceof intensity of this weak reection is sensitive to the both strong waves and the interactionis coherent. As a result, the intensity of weak reection feels the phase shift between thestrong reected wave and the incident wave. In a single layer system we only may mea-sure the standard phase of reected amplitude which is predicted by dynamical theoryand is described by the formulas obtained at the end of topic I. In the two-layer system anadditional possibility arises. If the parameters of the upper layer is di�erent from theseof substrate we may found that the weak reection can reveal this change of parametersthrough the additional phase shift.The situation is very similar to the X-Ray Standing Wave method. The idea of sucha method was formulated in the article� V. G. Kohn, Phys. Status Solidi (a), 1988, vol.106, p.31and then developed further in� V. G. Kohn, L. V. Samoilova, Phys. Status Solidi (a), 1992, vol.133, p.9� M. Kovalchuk, A. Kazimirov, V. Kohn, A. Kreines, L. Samoilova,. Physica B, 1996, vol.221, p.445.Another interesting e�ect of multiple di�raction with strong and weak waves arises inthe �ne structure of Reninger's peak of forbidden reection which can be excited by otherstrong reection. Just if the second reection is not strong but su�cient so the parameterof the deviation from the Bragg condition �g is large but in reasonable degree only thesecond order scattering process is su�cient for the �rst forbidden reection which hasa small parameter of deviation from the Bragg condition simultaneously with zero the�rst order scattering amplitude �h0 = 0: However, the second order contribution to thescattering amplitude is su�cient now and it can be written ase�h0 = �hg�g0�gIn the Bragg case we may obtain even the total reection (100 per cent) in the nonabsorb-ing crystal. In addition, the width of the reectivity maximum will depend on the Bragg16



condition for the second weak reection and may be changed by a simple rotation of thecrystal. The idea and the theoretical analysis of this case was proposed in the paper� V. G. Kohn, Kristallogra�ya, 1988, vol. 33, p.567. (in Russian)The multilayer system presents additional possibilities.For my opinion one of the most exciting phenomenon of multiple di�raction is con-nected with the well known anomalous transmission e�ect which was discovered �rstexperimentally by Borrmann� G. Borrmann, Phys. Zschr., 1941, vol. 42, p. 157.and only later it was explained theoretically. The explanation is very simple. In thetwo-beam di�raction the Bloch wave is the pure sine wave (X-Ray standing wave of mostsimple form). Under certain conditions the zero minimums of intensity of such a wavecoincide with the nodes of crystal lattice. Therefore the interaction between electronsof K-shell of atoms of lattice may arise only when atoms move their positions from thelattice node due to thermal vibrations.The multiple di�raction allows to �nd the condition when the intensity of X-Raystanding wave is modulated in two directions. In the six-beam case it is possible to achievesuch the structure of the spatial region of intensity minimum near the lattice node wheneven thermal vibrations cannot excite the the photoelectron emission. The absorptionbecomes extremely small and it is limited only by Compton scattering or crystal latticedefects. This e�ect, on the contrary, was �rst discovered theoretically in the article� T. Joko, A. Fukuhara, J. Phys. Soc. Japan, 1967, vol. 22, p. 597and was analysed in detail in the works� A. M. Afanasev, V. G. Kohn, Acta Crystall., 1977, vol. A33, p. 178� V. G. Kohn, Fiz. Tverd. Tela, 1976, vol.18, p.2538 (in Russian)Today there is only one accurate experimental measurement of this e�ect with a use ofsynchrotron radiation. Result is published in� A. Yu. Kazimirov, M. V. Kovalchuk, V. G. Kohn, T. Ishikawa, S. Kikuta,: K. Hirano, Europhys. Lett., 1993, vol.24, p.211.This e�ect is very sensitive to the angular deviations of the incident beam in two inde-pendent planes therefore for the collimation of the incident beam it is necessary to usethe same six-beam phenomenon.The more detailed discussion of these questions may be will be presented in a separatetopic. However, I have no time to make this now.
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