
The problem of coherence from di�erentsightsVictor KohnRussian Research Centre "Kurchatov Institute", 123182 Moscow, Russiadate: April, 1998; �le: hl-coher.psThe document is the part of Hamburg lectures"Selected topics in the theory of coherent scattering of X-rays"Contents:1. Maxwell's equations2. Temporal coherence3. Spatial coherence. View of the mutual coherence theory4. Spatial coherence. A magni�cation factor5. Spatial coherence. View of the angular analysis6. Angular coherence. Plane waves1. MAXWELL'S EQUATIONSThe notion of coherence arises each time when one needs to summarize di�erent wave�elds of di�erent nature. As it is well known, the X-rays being electromagnetic waves arethe solutions of the set of Maxwell's equations for the amplitudes of electric �eld E(r; t)and magnetic �eld H(r; t): Inside a matter without sources of the radiation the equationmay be wriiten as follow:�rotE = 1c @H@t ; rotH = 1c  @E@t + 4�j! ;divE = 4��; divH = 0; (1)where c is a light velocity, j(r; t) is the induced current density and � is the induced chargedensity. Since the electric and magnetic �elds relate closely to each other one can considerthe equation only for electric �eld E(r; t).Such an equation is obtained making a use of the relationrot rotE = grad divE� grad2E (2)and may be written in the form: grad2 � 1c2 @2@t2!E =4�c2 @j@t + 4�grad� (3)1



where j(r; t) is, in general, a linear function of E(r; t): The high energy X-Rays have:E = �h!; an energy of photons from 5 to 50 keV,� = hc=E = 12:397=E �A, a wavelength where E is in keV.In case of elastic scattering it is enough to keep the approximation whenj(r; t) = Z dt0�(r; t� t0)E(r; t0) (4)for many simple samples, where �(r; t) is the inhomogeneous in space scalar conductivityof the matter. As for the induced charge density �; it in
uences the �eld weakly and,usually, it is neglected.The solution of Maxwell's equation inside the volume of space without radiators isalways the coherent wave. It is convenient to represent the electric �eld E(r; t) as thecomplex value having the modulus and the phase E(r; t) = A(r; t) exp (i'(r; t)). Boththe modulus A(r; t) and the phase '(r; t) of the solution are continuous in space andin time values. They are de�ned to a great extent by the boundary conditions, i.e. theknown values at the boundary of the volume under consideration (usually the boundariesof the matter, for example, the crystalline plate). It is known that the energy density ofthe radiation averaged over the period of oscillation in time is proportional to the squaremodulus jA(r; t)j2 of the wave �eld. Just this value is measured by detector.The wave �eld at the boundary of the volume under consideration is de�ned by thesource of radiation. The coherent wave �eld may be de�ned as the solution of the Maxwell'sequation with one photon. However, the problem of coherence arises owing to the factthat the real wave �eld is produced by many sources in time and in space which radiatetogether. Usually, di�erent photons have no correlation in their position in space as wellas in time moments when they begin to radiate. It is often convenientin in usual optics,even if rather arti�cial, to divide coherence e�ects into two classi�cations, temporal andspatial. The former relates directly to the �nite bandwidth of the source, the latter to its�nite extent in space. In X-ray crystal optics we may introduce additionally the notionof angular coherence. 2. TEMPORAL COHERENCELet us consider, �rst of all, the origin of the temporal coherence in case where thesource is the X-ray tube. Below we will follow the approach given in:� A. M. Afanasev, V. G. Kohn, Sov. Phys. Crystallogr., 1977, vol. 22, No. 3., p.355.In this case the radiators are the atoms of the anode which radiate characteristic 
uores-cent quanta. Let the atom at the moment t0 radiate the wave with the middle frequency!0 and the intensity of this wave decreases essentially for the time interval �; then this�eld may be represented as followsE(t) = �(t� t0) exp(i!0t)f [(t� t0)=2� ] (5)We can expand the time dependence over the monochromatic waves as the Fourierintegral 2



E(t; t0) = Z 1�1 d!2� exp(i!t)F (! � !0; t0) (6)where F (!; t0) = exp(�i!t0) Z 10 dt exp(�i!t)f � t2� � (7)The function f(t) is exponential, for example, in case of isolated transition of 'free' atom,therefore the function F (!; t0) is de�ned as followsf(t) = exp (�t) ; F (!) = exp(�i!t0)i! + 1=2� (8)The intensity of such waves in time (at left) and frequency (at right) domains are shownin Fig.1. For many photons these are described by the formulasI(t) =Xk exp��t� tk� � �(t� tk); I(!) = 1(2!�)2 + 1 : (9)where �(t� tk) is the teta-function which equals zero for negative arguments.Each monochromatic component in the superposition of Eq.(6) is a coherent wavecompletely. As a result of subsequent elastic scattering (without a change of the frequency)the wave can be divided on two parts which will pass by di�erent trajectories, will changethe amplitude and will obtain the phase di�erence. Afterwards these can go at the sameplace in space once again. This process takes place in each interferometric device and itcan be represented mathematically asexp(i!t)! exp(i!t)fR1(!) +R2(!) exp[i'(!)]g (10)The detector measures the intensity of X-rays. Let us substitute the righthand part ofthe Eq.(10) instead of the lefthand part to the Eq.(6) and calculate the square modulus.As a result we obtain
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I(t; t0) = jE(t)j2 = Z d!2� Z d!02� exp[i(! � !0)(t� t0)][i(! � !0) + 1=2� ][i(!0 � !0) + 1=2� ]��fR1(!) +R2(!) exp[i'(!)]gfR�1(!0) +R�2(!0) exp[�i'(!0)]g (11)Now we have to take into account that it is impossible to measure the result of inter-ference produced by one photon for two reasons.(a) the intensity of one photon is very small,(b) it is very di�cult to distinguish the radiation between di�erent photons which areradiated at very close time moments.In the real experiment with high energy X-rays the time of observation is much longer thanthe duration of each photon and a huge number of photons are measured simultaneously.Therefore we can average the intensity over t0 in in�nite limits. This prosedure leads toa formulaI = Z dt0I(t; t0) = Z d!2� jR1(!)j2 + jR2(!)j2 + 2Re (R�1(!)R2(!) exp[i'(!)])[(! � !0)2 + 1=4� 2] (12)Such a simple calculation, performed above, allows us to �nd a general recipe how totake into account the temporal coherence of the source.(a) The photon arised in each act of radiation must be represented as the Fourierintegral over frequency. The full width at half of maximum (FWHM) of the Fourierspectrum just describes the bandwidth of the radiation.(b) The intensity of radiation which is measured by detector may be obtain from thetwo assumptions:1) each monochromatic wave having the frequency inside the bandwidth is coherentcompletely,2) di�erent frequencies inside the bandwidth of the source are completely incoherent.Let the path di�erence between two trajectories be l. Then the phase di�erence forseparate frequency will be '(!) = !l=c. However, for �nite bandwidth of the radiation �!the phase di�erent will have di�erent values inside the interval �' = �!l=c. The integral(12) cannot destroy the interference term in the intensity when the phase di�erence �'corresponding to the essential area of the integration in Eq.(12) �! is less than 2�,namely, when l� llc = 2�c=�!:The value llc is called the longitudinal coherence length.Taking into account the relation !=c = 2�=� where � is a wavelength of the radiationand the fact that �! � ! we can write the longitudinal coherence length in terms ofwavelength as llc = �2=��: (13)This property is illustrated by the Fig.2. In the �gure � = 1, �� = 0:05: One cansee that at the length �2=2�� = 10 the phase di�erence equals �. When the elasticscattering of X-rays by the sample is frequency insensitive the value �!=! = ��=� =1=!� is determined by the life time of the 
uorescent quanta. Usually this value is about1=!� � 2 � 10�4: In this case the longitudinal coherence length can be estimated as4



llc = 5 � 103 � = 0:5 �m for the typical wavelength value � = 1�A. This is rather smallvalue which shows that the initial X-rays from the source are coherent only partially andat rather small level.However, if the elastic scattering in the samples becomes frequency sensitive, namely,the frequency dependence of the amplitude R1(!) or R2(!) has a sharp peak inside thebandwith of the source, then the coherence length may be rather increased. Such aprocedure is called a monochromatization while the special devices which do it are calledmonochromators. The general way to reduce the e�ective bandwidth of the radiation isa usage of Bragg di�raction of X-rays in single crystals.The problem becomes much more essential in using the synchrotron radiation whichhas in case of bending magnet a huge bandwidth having all frequencies of electromagneticspectrum from visible light to very hard X-rays (the energy of photons from 1 eV to 100keV for SR source of third generation). One of the best result of �ltration of X-rays of14.41 keV (the energy of nuclear resonance in 57Fe which shows the M�ossbauer e�ect) isachived by means of Bragg di�raction monochromator with (579) asymmetric re
ectionsin Si and (333) symmetric re
ection in Ge to conserve the initial direction of beam, theresult was reported in:� A. I. Chumakov, R. R�u�er, A. Q. R. Baron, J. Metge, H. Gr�unsteudel,: H. Gr�unsteudel, X-ray optics for nuclear inelastic scattering.: Proc. SPIE, 1997, vol. 3151, p.262-270.The energy bandwidth was as narrow as 1 meV with �!=! � 10�7 with the coherencelength llc = 1:2 mm: Usually the monochromatization up to �!=! � 10�5 is enough formany experiments with X-ray di�raction.As examples of the interference devices where the longitudinal coherence length isessential to obtain the interference pattern of high quality one may consider:(1) Fabri-Perot interferometer where di�erent rays interfere after re
ections by semi-transparent mirrors. Let d be a distance between the mirrors, then the direct wave and
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FIG. 2. Two waves with slightly di�erent frequencies. The phase di�erence equals � at thelength �2=2�� = 10 with � = 1, �� = 0:05 5



double re
ected wave will have the phase di�erence (2�=�)2d = (4�=hc)Ed where E isa photon energy. The transmitted radiation will have maximums when this di�erenceequals 2�n. Therefore in energy scale the maximums will appear through the distance�E = hc=2d which depends only on the distance between mirrors. In coherent (monochro-matic) radiation the peaks will be very sharp. However, if the bandwidth of the radiationis comparable with the distance between peaks these become smoothed in a great extent.(2) Fresnel zone plate where the focusing becomes good only if the path di�erentfor di�erent zones exceeds the longitudinal coherence length. For far zones where thiscondition is not met the interference disappears and the aperture of the lens becomessmaller.(3) Bragg-Fresnel lens where the Bragg di�raction plays the role of rays re
ector withchanging of phase in di�erent Fresnel zones. The lens can work with white beam becausethe Bragg di�raction plays the role of monochromator simultaneously with making aphase shift .3. SPATIAL COHERENCE. VIEW OF THE MUTUAL COHERENCETHEORY.Spatial coherence relates to a possibility of observing the interference fringes in space.The radiators of X-rays are atoms or electrons. These have very snall size and may betreated as point sources. Each point of the macroscopic source produces the independentcoherent wave which is in fact as a spherical wave. The spherical wave is a real coherentwave in space in case where it is a monochromatic wave in time. It is a solution of theMaxwell's equation (grad2 +K2)E(r; !) = 4��(r); K = !c (14)Making the Fourier transformationE(r; !) = Z dk(2�)3 exp(ikr)E(k; !); �(k) = 1 (15)we �nd easily E(k; !) = 4�(k2 �K2) : (16)Now substituting the expression in the Fourier integral and making the calculations inspherical coordinates we obtainE(r; !) = 1�ir Z 1�1 dk k(k2 �K2) exp(ikr) = exp(iKr)r (17)To understand the origin of spatial coherence let us consider a simple experimentalsetup of in-line holography (see Fig.3) which is used for recent years in experiments onphase contrast imaging of transparent objects.6



Since the distance from the source to the object is rather long we can select the opticalaxis as the z-axis of cartesian coordinate system and use the small angle approxima-tion, when the transverse coordinates x and y are much shorter compared to z coordinate.In this section we will suppose the monochromatic wave with the wavelength � and wavenumber K = 2�=�: In the plane z = const. we haveE(x; y; z) = ES(x� xs; y � ys; z � zs) (18)where xs; ys and zs are the coordinates of the point on the source (for example, the atomon the anode of X-ray tube or electron in the storage ring) andES(x; y; z) = 1r exp(iKr) � 1z exp iKz + iK x2 + y22z ! ; (19)where r = �x2 + y2 + z2�1=2 (20)The formula (19) describes the wave �eld inside the empty space between the sourceand the object. When passing through the thin object the wave �eld can change itsamplitude and phase locally. Let us consider the object which is homogeneous along they-axis. It allows us to approximate the wave �eld just after the object asE(x; y; zo) = ES(x� xs; y � ys; zo � zs)F (x);F (x) = exp (i'0(x)� '00(x)) (21)where we introduced the complex phase shift ' = '0 + i'00The value of the phase shift produced by the object can be calculated under theassumption that the object is very small compared to the long distance from the source
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FIG. 3. Experimental set-up of in-line holography7



to the object and the rays which go through the object are approximately parallel. Thisallows us to consider the equation for the envelope of the wave in the formdE(z)dz = i2�� �E(z) (22)where E(z) = 1 at the incoming boundary of the object. It is easy to understand that ifthe object is homogeneous with the constant value of complex susceptibility � then thesolution on the outgoing boundary equalsE(x) = exp (i'(x)) ; '(x) = 2�� �t(x) (23)where t(x) is a variable thickness of the object along the ray at x-coordinate. When theobject has a complicated structure the phase shift may be more complex'(x) = 2�� Z t(x)0 �(x; z)dz (24)To obtain the wave �eld of the radiation at the detector plane we need to solve theMaxwell's equation in empty space with the boundary condition (21). The solution maybe written by means of using the Fresnel-Kirchho� integral relationE(xd; yd; zd) = Z dx Z dy Pt(xd � x; yd � y; zd � zo)ES(x� xs; y � ys; zo � zs)F (x) (25)where Pt(x; y; z) is the propagator of x; y-distribution of the �eld along the z-axis. Theexact propagator is proportional to the spherical wave once again. In a frame of smallangle approximation it can be expressed separately for x and y axes and x-part looks asfollows Pt(x; y; z) = exp(iKz)P (x; z)P (y; z); P (x; z) = 1pi�z exp iK x22z! (26)Since the object changes the wave �eld only in the x-direction we can calculate theintegral over y directly. The result looks as a convolution of two propagators which equalsthe propagator once again but on the total distancepi� Z dyP (yd � y; zdo)P (y � ys; zos) = pi�P (yd � ys; zds) (27)where zdo = zd � zo is the object-to-detector distance, zos = zo � zs is the source-to-object distance, zds = zdo + zos = zd � zs is the source-to-detector distance. This result iswell known and it has a clear physical sense from the point of view of Fresnel-Kirchho�principle. Thus we obtain the expressionE(xd; yd; zd) = exp(iKzds)S(yd � ys; zds) Z dxP (xd � x; zdo)F (x)S(x� xs; zos) (28)where S(x; z) = pi�P (x; z) = 1pz exp iK x22z! (29)8



is a one-dimensional part of the spherical wave. The position sensitive detector canmeasure the intensity of radiation at each point xd therefore we are interested in thevalue J(xd; xs) = jE(xd; yd; zd)j2 = 1zds Z dx Z dx0F (x)F �(x0)��P (xd � x; zdo)P �(xd � x0; zdo)S(x� xs; zos)S�(x0 � xs; zos) (30)At this point of our analysis we must remember once again that each point of thesource is an individual photon producer and di�erent photons have no a correlation intheir phases. Therefore we need to integrate just the intensity over all points of the sourcerather than the amplitude. The signal which will be really registered by detector equalsI(xd) = Z dxsJ(xd; xs)B(xs) (31)where B(x) is the function which describes the brightness of di�erent points on the source.In a description of the synchrotron radiation source this function is accepted, usually, asthe Gaussian with a random mean value (rms) �; namely,B(x) = 1�p2� exp � x22�2! : (32)The source size in this case can be estimated as ws = �p8.Substituting Eq.(30) to Eq.(31) we need to integrate only spherical waves from thesource to object which leads to the function�(x; x0) = Z dxsB(xs)S(x� xs; zos)S�(x0 � xs; zos) (33)The integral can be calculated analytically with a help of the table integralZ 1�1 dx exp(�i�x + i
x2) =  i�
 !1=2 exp �i�24
! (34)where � and 
 are arbitrary complex values. As a result, we obtain�(x; x0) = 1zos exp iK [x2 � x02]2zos !�(x� x0) (35)where �(x) = exp � x22l2tc! (36)and ltc = �zos2�� = p2� �zosws : (37)9



Now we can calculate the total expressionI(xd) = 1�zdszdozos Z dx Z dx0 exp� 2�i�zdoxd[x0 � x]��� exp� i�zds�zdozos [x2 � x02]�F (x)F �(x0)�(x� x0) (38)Here the source properties are represented by the function �(x � x0) which is called themutual coherence function in the theory of partial coherence. When source size tendsto zero this function equals unity. In general case it describes the possible correlationbetween two points in the object plane.Let us consider a simple example of the object: a fully opaque screen with two narrowslits at the position x1 = �a=2 and x2 = a=2: having a small width d (Fig.4) In this casethe function F (x) can be approximated as F (x) = d[�(x+ a=2) + �(x� a=2)] where �(x)is a Dirac delta-function. The intensity distribution at the detector plane is described bysimple expression I(xd) = 2d2�zdszdozos �1 + �(a) cos�2� axd�zdo�� : (39)It shows that the interference pattern consists of the intensity oscillations (fringes) withthe constant period p = �zdo=a. The quality of the fringes produced by an interferometricsystem can be described quantitatively using the visibility V; which, as �rst formulatedby Michelson, is given by V (x) = Imax(x)� Imin(x)Imax(x) + Imin(x) (40)where Imax(x) and Imin(x) are proportional to the maximum and minimum value of theirradiance in a vicinity of the point x. The substitution of Eq.(39) to the Eq.(40) gives
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us that V (x) = const = �(a): Now we see that the parameter ltc has a physical meaningof the distance between the slits giving the value 0:6 for the fringes visibility. Usually itis called the transverse coherent length :4. SPATIAL COHERENCE. A MAGNIFICATION FACTOR.The approach presented above follows the corresponding chapters of the books onoptics. However, in practical calculations of the complicated objects it is inconvenientto calculate a double-dimensional integral in Eq.(38) with a use of the mutual coherencefunction of Eq.(36). Instead of this one may calculate directly the integral of Eq.(28) forall source coordinates and then apply the Eq.(31) for averaging the intensity. In doingthis one may �nd the useful property of the integral of Eq.(28). Namely, the kernel of theintegral, i.e. the functionP (xd � x; zdo)S(x� xs; zos) = S(xd � xs; zds)G(x; xds; zdo; zos) (41)whereG(x; xds; zdo; zos) = � zdsi�zdozos�1=2 exp�� i��zdo �2xxds � zdszosx2 � zoszdsx2ds�� (42)and xds = xd + xs zdozos (43)This property allows us to write the relative wave �eld as followsE(xd; yd; zd)ES(xd; yd; zd) = Z dxG(x; xds; ; zdo; zos)F (x) (44)Now there is no necessity to calculate the total di�raction pattern for each point ofsource because for each point of source the di�raction pattern is the same but it becomesonly to be shifted on the de�nite distance. According to the Eq.(43) the shift of thesource point from the origin on xs leads to a shift of the di�raction pattern as a wholeon the distance xszdo=zos. Therefore we can calculate the interference fringes only forthe middle point of the source and afterwards we can average the resulting intensity overthe area having a width w0s = wszdo=zos where ws is the source size (see Fig. 1.3). It isobvious that the fringes with the distance between them pf less than w0s will disappear orbecome much less visible. On the other hand, the fringes with the distance pf � w0s willbe practically undisturbed by the source size.This simple analysis allows us to formulate the main recipe for increasing the spatialcoherence. Together with decreasing the source size one need to increase the distancesource-to-object compared to the distance object-to-detector. It is of interest to estimatethe characteristics of the ESRF (European Synchrotron Radiation Facility) beam lines.The source size of the undulator ws � 30 �m, the source-to-object distance zos � 40 m.With these parameters we calculate that for the object-to-detector distance zdo = 1 m,the fringes having the distance pf > 1 �m between them can be distinguished.11



5. SPATIAL COHERENCE. VIEW OF THE ANGULAR ANALYSISThe monochromatic spherical wave presents by itself one kind of the coherent wave�eld. Its characteristics are the frequency and the point of origin. However, just anothercoherent wave �eld is widely considered in the physics of high energy particles, in general,and in the physics of high energy X-rays optics, in particular. This is a plane monochro-matic wave. Its characteristics are the frequency and the direction of movement while thelocation in space is absent. Nevertheless, since the full set of plane waves forms a completebasis, each space function can be expanded over the plane waves, in other words, it canbe expressed as a superposition of plane waves. For example, the spherical wave with theorigin at r = 0 in the half-space (s0 � r) > 0 has a well known representationES(x; y; z) = exp(iKr)r = 2�i Z dq(2�)2 exp �iqr + is0rpK2 � q2�pK2 � q2 ; (45)where q = (qx; qy) is a two-dimensional vector in the plane normal to the unit vector s0.To obtain this relation mathematically let us begin once again from the Maxwell'sequation (grad2 +K2)E(r; !) = 4��(r); K = !c (46)Making the Fourier transformationE(r; !) = Z dk(2�)3 exp(ikr)E(k; !); �(k) = 1 (47)we �nd easily E(k; !) = 4�(k2 �K2) : (48)Substituting this expression into the Fourier integral we represent the three-dimensional wave vector k as k = q + ps0 where s0 is a unit vector along the z-axisso z = (s0r) and separate the integral over q and over p.E(r) = 2 Z dq(2�)3 exp(iqr) Z dp exp(ipz)p2 � (K2 � q2) (49)The last integral is calculated by means of Resique Theorem giving a relation (45).In a frame of small angle approximation the Eq.(45) can be represented asES(x; y; z) � 2�iK Z dqxdqy(2�)2 exp [ik0(q)(r� rs)] (50)with k0(q) = s0  K � q22K!+ q: (51)12



Here we introduce the radius-vector of the point on the source rs. We shall assume alsothat s0 = (0; 0; 1) is a unit vector along the optical axis (axis z), q = (qx; qy; 0) is a smallvector which is perpendicular to s0: It describes the angular deviation of the particularplane wave from the base direction.The representation of Eq.(50) allows us to move the problem of calculating the pertur-bation of the incident wave �eld by the object from the spherical wave to the plane waveshaving di�erent deviations from the middle direction (z-axis). It is not convenient in caseof inhomogeneous object. On the contrary, it is very useful for a description of sphericalwave di�raction in single crystals. Indeed, the single crystal in a form of a plane-parallelplate is homogeneous at the macro level and it does not change the spatial properties ofthe plane wave. The only intensity value can be changed due to an absorption.However, owing to a crystal lattice, i.e. an inhomogeneity at an atomic level, near theBragg angle of two-beam di�raction, for example, the plane wave of standard polarizationbecomes splitted on two plane waves. These obtain di�erent phases in passing through thecrystal plate owing to the di�erent phase velocity and this phenomenon is very sensitiveto the angular deviation from the Bragg angle. The "pendell�ozung" fringes arise in theangular dependence of intensity as a result of interference between these two waves.Let us consider this case in more detail from the point of view of observation of thise�ect in an experiment. If a scattering plane is (x; z) then the transmission amplitude Atdoes not depend on qy; namely, At = At(qx) and the wave �eld after the crystal plate (atthe detector) can be written asE(xd; yd; zd) � 2�iK Z dqxdqy(2�)2 exp [ik0(q)(rd � rs)] At(qx) (52)First of all we can calculate the integral over qy by means of table integral of Eq.(34) as�2�iK �1=2 Z dqy2� exp iqy[yd � ys]� izds q2y2K! = S(yd � ys; zds) (53)This result of calculation is evident physically once again. The partial spherical wave ofy-axis stays the same as without crystal.Now the wave �eld is described by the following expressionE(xd; yd; zd) = exp(iKzds)S(yd � ys; zds)�2�iK �1=2�� Z dqx2� exp iqx[xd � xs]� izds q2x2K! At(qx); (54)which may be compared with Eq.(28). Spatially inhomogeneous object in
uences thewave �eld in di�erent extent for di�erent distances source-to-object. On the contrary,the Bragg di�raction in
uence in di�erent extent the plane waves with di�erent angulardeviations from the Bragg angle and this does not depend on the position of the crystalplate between the source and the detector.In general case of arbitrary value of the source-to-detector distance zds the integralin Eq.(54) may be rather complicated and will be analysed later. Here we consider a13



situation where the distance zds is very large. In this case the integral can be estimatedapproximately by means of stationary phase method considering the function At(qx) tobe slow one.The Method of Stationary Phase is a very powerful technique in theoretical optics. Itis a foundation of the geometrical optics which allows to obtain a solution of many opticalproblems by simple consideration of ray trajectories. This method allows to estimateapproximately the integralI(x) = Z dq F (q) exp (i'(q; x)) (55)where both functions F (q) and '(q; x) are slow functions of the variable q. However,the phase '(q; x) has very large value. In this case the integrand is strongly oscillatingfunction, therefore the contribution of all regions of integration is very small except onlythe regions where the phase '(q; x) has zero �rst derivative. Let us assume, for the sakeof simplicity, that we have only one such a point q0(x) which is a solution of the equationd'(q; x)dq = 0 (56)This point is just the point of stationary phase. Near this point we may expand the phaseas the Taylor series '(q) � '(q0) + 12  d2'dq2 !q=q0 (q � q0)2 + � � � (57)Now taking into account that only small region near q0 contributes to the integral wecan replace a slow function F (q) by it's value at the stationary phase point F (q0) andconsider the integral with approximate expression of the phase Eq.(57). However, sinceother regions don't contribute to the integral we may conserve in�nite limits. Then theintegral can be calculated analytically using once again the Eq.(34).Z dq F (q) exp (i'(q; x)) � (2�i)1=2  d2'(q0)dq2 !�1=2 F (q0) exp[i'(q0)] (58)So in accordance with this method we may replace At(qx) by constant value at thepoint inside the integration area where the argument of the exponential has a zero �rstderivative. This point is easy to calculate qx = K(xd � xs)=zds. After that the integralbecomes equal to the partial spherical wave once again and we obtainE(xd; yd; zd)ES(xd; yd; zd) = At �Kxd � xszds � (59)The geometrical parameters which enter to the argument of transmission amplitude areillustrated in Fig.5.We obtain the result which has a simple interpretation in a frame of geometricaloptics approach. We may represent the spherical wave as a set of rays which pass indi�erent directions. The density of rays is constant. The crystal plate in
uence each ray14



in accordance with the deviation of its direction from the Bragg direction. The intensityof radiation for each point of the source equalsJ(xd; xs) = jE(xd; yd; zd)j2 = 1zds ����At �Kxd � xszds �����2 (60)while the real intensity, which will registered by the detector, is obtained after integratingEq. (60) over the source size. If the source has a small x-size ws compared to the periodof the "pendell�ozung" fringes pf then these will be registered by the position sensitivedetector, for example, by the �lm. In the opposite case the �lm will be illuminatedhomogeneously showing no coherent e�ect. One can see that the magni�cation factoris absent in this case. The period of fringes can be obtained in the theory of two-beamdi�raction. It is known that in the central part of the pattern the period pf / zds�=(tc�)1=2where tc is the crystal plate thickness, � ia a wavelength of X-rays and � is an extinctionlength. Therefore the condition of visibility of the fringes depends on the total distancesource-to-detector. This means that it is essential the angular size of source ws=zds as thesource is seen from the detector rather than its real size.6. ANGULAR COHERENCE. PLANE WAVESFor a long time the study of X-ray di�raction in crystals was made under ratherdi�erent conditions when the detector had a large window and it registered the totalintensity over large enough area of space. It is evident that under these conditions wehave to integrate the square modulus of Eq.(54) over xd; yd and the limits of integrationover xd can be expanded to in�nity. As a result, we obtainI = Z dxddyd jE(xd; yd; zd)j2 = Wyzds Z dqxK jAt(qx)j2 (61)

zds

xd - xs
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(or film)FIG. 5. The geometrical parameters of in-line experimental spheme including the crystal.The position of the crystal is unessential. Angular width of the source in
uences the resolution15
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FIG. 6. Measurement of "rocking curve" by double crystal experimental setupwhere Wy is a width of the detector window in y-direction. This result shows that theintegral intensity over the position at the detector does not depent on the source size andthe source-to-detector distance. On the other hand, it can be represented as the integraltransmission coe�cient of the crystal over the angle of incidence of di�erent plane waves.It is a consequence of the general property of Fourier transformationZ dx jF (x)j2 = Z dq2� jF (q)j2 ; if F (x) = Z dq2�F (q) exp(iqx)which is known as the Parseval's theorem. Naturally it is not possible to study thecoherent phenomena by means of this experimental setup.However, this experimental arrangement may be much enhanced by introducing thesecond crystal before the sample. It must be the perfect crystal under the Bragg conditionin re
ection or transmission geometry and the sample can be slightly rotated near theBragg angle. The Fig.6 shows schematically the experimental set-up in transmissiongeometry. In this case the detector will measureI(q0) = Wyzds Z dqxK jAt(qx + q0)j2 jB(qx)j2 (62)where Br(qx) is the re
ection amplitude of the second crystal and q0 is the additionaldeviation of the plane wave from the Bragg angle owing to rotating the crystal. Thepreceding crystal plays the role of the plane wave source for analysing the angular depen-dence of the sample. It is called usually a monochromator. If the width of the re
ectivitymaximum of the monochromator is much less compared to the angular period of the"pendell�ozung" fringes of the sample then one obtains the possibility to investigate thiscoherent phenomenon in dependence on q0; namely,I(q0) � Wyzds jAt(q0)j2 Z dqxK jB(qx)j2 (63)The curve of such a type is called "the rocking curve".16



Thus, the rocking curve allows us to investigate the interference phenomena as aresult of partially coherent plane wave superposition. This branch of X-ray optics isknown as the "X-ray multicrystal di�ractometry". Just in the frame of this optics themonochromatization of the radiation is performed (see above). The coherent phenomenaof X-ray di�ractometry is known for a long time, while the spatial coherence of new X-raysource at the synchrotron radiation beam lines is a relatively fresh branch of X-ray optics.Another branch of coherent X-ray crystal optics is the "Di�raction topography ofcrystal-lattice defects". The �eld of displacement of atoms from their normal positionnear the individual crystal-lattice defect like a dislocation may be clearly seen on the �lmif the front of X-ray beam before the crystal is restricted by a narrow slit. The theoryof this e�ect is rather complicated and it is based on the spatially inhomogeneous crystallattice. In this case the Maxwell's equations are reduced to the Takagi-Taupin equationswhich have to be calculated numerically.
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