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1. MAXWELL’S EQUATIONS

The notion of coherence arises each time when one needs to summarize different wave
fields of different nature. As it is well known, the X-rays being electromagnetic waves are
the solutions of the set of Maxwell’s equations for the amplitudes of electric field E(r, t)
and magnetic field H(r, t). Inside a matter without sources of the radiation the equation
may be wriiten as follow:
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—rotE = P rot H = p <§ —|—47TJ> ,

divE = 4mp, divH =0, (1)

where ¢ is a light velocity, j(r, t) is the induced current density and p is the induced charge
density. Since the electric and magnetic fields relate closely to each other one can consider
the equation only for electric field E(r, t).

Such an equation is obtained making a use of the relation

rot rot E = grad divE — grad’E (2)
and may be written in the form:
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where j(r,t) is, in general, a linear function of E(r,t). The high energy X-Rays have:
E = hw, an energy of photons from 5 to 50 keV,
A =he/E =12.397/FE A, a wavelength where E is in keV.

In case of elastic scattering it is enough to keep the approximation when

j(r,t) = / dt'o(r,t — t')E(r, ) (4)

for many simple samples, where o(r,t) is the inhomogeneous in space scalar conductivity
of the matter. As for the induced charge density p, it influences the field weakly and,
usually, it is neglected.

The solution of Maxwell’s equation inside the volume of space without radiators is
always the coherent wave. It is convenient to represent the electric field E(r,?) as the
complex value having the modulus and the phase E(r,t) = A(r,t)exp (ip(r,t)). Both
the modulus A(r,t) and the phase ¢(r,t) of the solution are continuous in space and
in time values. They are defined to a great extent by the boundary conditions, i.e. the
known values at the boundary of the volume under consideration (usually the boundaries
of the matter, for example, the crystalline plate). It is known that the energy density of
the radiation averaged over the period of oscillation in time is proportional to the square
modulus |A(r,?)[* of the wave field. Just this value is measured by detector.

The wave field at the boundary of the volume under consideration is defined by the
source of radiation. The coherent wave field may be defined as the solution of the Mazxwell’s
equation with one photon. However, the problem of coherence arises owing to the fact
that the real wave field is produced by many sources in time and in space which radiate
together. Usually, different photons have no correlation in their position in space as well
as in time moments when they begin to radiate. It is often convenientin in usual optics,
even if rather artificial, to divide coherence effects into two classifications, temporal and
spatial. The former relates directly to the finite bandwidth of the source, the latter to its
finite extent in space. In X-ray crystal optics we may introduce additionally the notion
of angular coherence.

2. TEMPORAL COHERENCE

Let us consider, first of all, the origin of the temporal coherence in case where the
source is the X-ray tube. Below we will follow the approach given in:

e A. M. Afanasev, V. G. Kohn, Sov. Phys. Crystallogr., 1977, vol. 22, No. 3., p.355.
In this case the radiators are the atoms of the anode which radiate characteristic fluores-
cent quanta. Let the atom at the moment ¢, radiate the wave with the middle frequency
wo and the intensity of this wave decreases essentially for the time interval 7, then this
field may be represented as follows

E(t) = 0(t — to) exp(iwot) f [(t — t0)/27] (5)

We can expand the time dependence over the monochromatic waves as the Fourier
integral



Elt,to) = /_ : ‘Zi—i exp(ist) F(w — wo, to) (6)
where
F(w, to) = exp(—iwto) | * dt exp(—iwt) f (%) (7)

The function f(t) is exponential, for example, in case of isolated transition of 'free’ atom,
therefore the function F'(w,t) is defined as follows

exp(—iwty)

f)=ep(~),  Plw)= T

(8)

The intensity of such waves in time (at left) and frequency (at right) domains are shown
in Fig.1. For many photons these are described by the formulas
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where 0(t — t;) is the teta-function which equals zero for negative arguments.

Each monochromatic component in the superposition of Eq.(6) is a coherent wave
completely. As aresult of subsequent elastic scattering (without a change of the frequency)
the wave can be divided on two parts which will pass by different trajectories, will change
the amplitude and will obtain the phase difference. Afterwards these can go at the same
place in space once again. This process takes place in each interferometric device and it
can be represented mathematically as

exp(iwt) — exp(iwt){ Ry (w) + Rz(w) explip(w)]} (10)

The detector measures the intensity of X-rays. Let us substitute the righthand part of
the Eq.(10) instead of the lefthand part to the Eq.(6) and calculate the square modulus.
As a result we obtain
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FIG. 1. The intensity of resonant photons in time and frequency domains
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x{Ry(w) + Ry(w) explig(w) H R (W) + R5(w') exp[—ip(w)]} (11)

Now we have to take into account that it is impossible to measure the result of inter-
ference produced by one photon for two reasons.

(a) the intensity of one photon is very small,

(b) it is very difficult to distinguish the radiation between different photons which are
radiated at very close time moments.
In the real experiment with high energy X-rays the time of observation is much longer than
the duration of each photon and a huge number of photons are measured simultaneously.
Therefore we can average the intensity over ¢y in infinite limits. This prosedure leads to
a formula

dw |Ry(w)[? + [Ry(w)]? + 2Re (R} (w) Ry (w) explip(w)])
I=[dulttw) = [ 5 [(w — wo)? + 1/477]

(12)

Such a simple calculation, performed above, allows us to find a general recipe how to
take into account the temporal coherence of the source.

(a) The photon arised in each act of radiation must be represented as the Fourier
integral over frequency. The full width at half of maximum (FWHM) of the Fourier
spectrum just describes the bandwidth of the radiation.

(b) The intensity of radiation which is measured by detector may be obtain from the
two assumptions:

1) each monochromatic wave having the frequency inside the bandwidth is coherent
completely,

2) different frequencies inside the bandwidth of the source are completely incoherent.
Let the path difference between two trajectories be [. Then the phase difference for
separate frequency will be p(w) = wl/c. However, for finite bandwidth of the radiation Aw
the phase different will have different values inside the interval Ap = Awl/c. The integral
(12) cannot destroy the interference term in the intensity when the phase difference Ay
corresponding to the essential area of the integration in Eq.(12) Aw is less than 2,
namely, when [ < [;. = 27¢/Aw.

The value [ is called the longitudinal coherence length.

Taking into account the relation w/c = 27/X where A is a wavelength of the radiation
and the fact that Aw < w we can write the longitudinal coherence length in terms of
wavelength as

le = A2/ AN (13)

This property is illustrated by the Fig.2. In the figure A = 1, A\ = 0.05. One can
see that at the length A\2/2A\ = 10 the phase difference equals 7. When the elastic
scattering of X-rays by the sample is frequency insensitive the value Aw/w = AXN/A =
1/wt is determined by the life time of the fluorescent quanta. Usually this value is about
1/wr ~ 2-10% In this case the longitudinal coherence length can be estimated as
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i, = 5-10°X = 0.5 um for the typical wavelength value A = 1A. This is rather small
value which shows that the initial X-rays from the source are coherent only partially and
at rather small level.

However, if the elastic scattering in the samples becomes frequency sensitive, namely,
the frequency dependence of the amplitude R;(w) or Ry(w) has a sharp peak inside the
bandwith of the source, then the coherence length may be rather increased. Such a
procedure is called a monochromatization while the special devices which do it are called
monochromators. The general way to reduce the effective bandwidth of the radiation is
a usage of Bragg diffraction of X-rays in single crystals.

The problem becomes much more essential in using the synchrotron radiation which
has in case of bending magnet a huge bandwidth having all frequencies of electromagnetic
spectrum from visible light to very hard X-rays (the energy of photons from 1 eV to 100
keV for SR source of third generation). One of the best result of filtration of X-rays of
14.41 keV (the energy of nuclear resonance in *’Fe which shows the Mossbauer effect) is
achived by means of Bragg diffraction monochromator with (579) asymmetric reflections
in Si and (333) symmetric reflection in Ge to conserve the initial direction of beam, the
result was reported in:

e A. I Chumakov, R. Riiffer, A. Q. R. Baron, J. Metge, H. Griinsteudel,

H. Griinsteudel, X-ray optics for nuclear inelastic scattering.

Proc. SPIE, 1997, vol. 3151, p.262-270.
The energy bandwidth was as narrow as 1 meV with Aw/w ~ 1077 with the coherence
length ;. = 1.2 mm. Usually the monochromatization up to Aw/w & 10~° is enough for
many experiments with X-ray diffraction.

As examples of the interference devices where the longitudinal coherence length is
essential to obtain the interference pattern of high quality one may consider:

(1) Fabri-Perot interferometer where different rays interfere after reflections by semi-
transparent mirrors. Let d be a distance between the mirrors, then the direct wave and
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FIG. 2. Two waves with slightly different frequencies. The phase difference equals 7 at the
length A\?/2AX = 10 with A = 1, A\ = 0.05



double reflected wave will have the phase difference (27/)\)2d = (47 /hc)Ed where E is
a photon energy. The transmitted radiation will have maximums when this difference
equals 27n. Therefore in energy scale the maximums will appear through the distance
AFE = hc/2d which depends only on the distance between mirrors. In coherent (monochro-
matic) radiation the peaks will be very sharp. However, if the bandwidth of the radiation
is comparable with the distance between peaks these become smoothed in a great extent.

(2) Fresnel zone plate where the focusing becomes good only if the path different
for different zones exceeds the longitudinal coherence length. For far zones where this
condition is not met the interference disappears and the aperture of the lens becomes
smaller.

(3) Bragg-Fresnel lens where the Bragg diffraction plays the role of rays reflector with
changing of phase in different Fresnel zones. The lens can work with white beam because
the Bragg diffraction plays the role of monochromator simultaneously with making a
phase shift .

3. SPATIAL COHERENCE. VIEW OF THE MUTUAL COHERENCE
THEORY.

Spatial coherence relates to a possibility of observing the interference fringes in space.
The radiators of X-rays are atoms or electrons. These have very snall size and may be
treated as point sources. Each point of the macroscopic source produces the independent
coherent wave which is in fact as a spherical wave. The spherical wave is a real coherent
wave in space in case where it is a monochromatic wave in time. It is a solution of the
Maxwell’s equation

(grad® + K3 E(r,w) = 4r6(r), K = % (14)
Making the Fourier transformation
Brw) = [ 5 explike)B(kw),  0(k) =1 (15)
r,w)= e xp(2kr , W), =
we find easily
4
Bkw) = 16
0w) = e e (16)

Now substituting the expression in the Fourier integral and making the calculations in
spherical coordinates we obtain

E(r,w) = Lo dk‘4k exp(ikr) = exp(iKT)

mir oo (k? — K?) r (17)

To understand the origin of spatial coherence let us consider a simple experimental
setup of in-line holography (see Fig.3) which is used for recent years in experiments on
phase contrast imaging of transparent objects.



Since the distance from the source to the object is rather long we can select the optical
axis as the z-axis of cartesian coordinate system and use the small angle approxima-
tion, when the transverse coordinates x and y are much shorter compared to z coordinate.
In this section we will suppose the monochromatic wave with the wavelength A and wave
number K = 27 /A. In the plane z = const. we have

E(L%Z) :ES(x_ISJy_y&Z_ZS) (18)

where x4, y, and z; are the coordinates of the point on the source (for example, the atom
on the anode of X-ray tube or electron in the storage ring) and

x? + y2
2z ’

1 1
Es(x,y,z) = ;exp(iKr) ~ ~ exp <éKz +iK

(19)

where
1/2
r= (a2 492 +27)" (20)

The formula (19) describes the wave field inside the empty space between the source
and the object. When passing through the thin object the wave field can change its
amplitude and phase locally. Let us consider the object which is homogeneous along the
y-axis. It allows us to approximate the wave field just after the object as

E('I.7y720) :ES(aj_ws,y_yg,Zo—Zs)F(l‘),
F(z) = exp (ig'(z) — ¢"(2)) (21)
where we introduced the complex phase shift © = ¢’ + i¢”

The value of the phase shift produced by the object can be calculated under the
assumption that the object is very small compared to the long distance from the source

X, A
x 4 Source Object
° A
XO
2D-detector
(film)
z 0s Zdo
z s z o z d

FIG. 3. Experimental set-up of in-line holography



to the object and the rays which go through the object are approximately parallel. This
allows us to consider the equation for the envelope of the wave in the form
dE(z) 2m

o= zij(z) (22)

where E(z) = 1 at the incoming boundary of the object. It is easy to understand that if
the object is homogeneous with the constant value of complex susceptibility x then the
solution on the outgoing boundary equals

) 27
E(x) = exp (ip(z)), (o) = —xt(w) (23)
where t(z) is a variable thickness of the object along the ray at z-coordinate. When the
object has a complicated structure the phase shift may be more complex

21 [tz
p(r) = o

To obtain the wave field of the radiation at the detector plane we need to solve the
Maxwell’s equation in empty space with the boundary condition (21). The solution may
be written by means of using the Fresnel-Kirchhoff integral relation

x(x, z)dz (24)

E(Uﬁd, Yd, Zd) = /dﬁ/dy Pt(iﬂd —Z,Yq — Y, 24 — Zo)Es(iﬂ —Ts, Y — Ysy R0 — Zs)F(ﬂf) (25)

where P,(x,y, z) is the propagator of x,y-distribution of the field along the z-axis. The
exact propagator is proportional to the spherical wave once again. In a frame of small
angle approximation it can be expressed separately for z and y axes and x-part looks as
follows

Pi(x,y,z) = exp(iK2)P(z,2)P(y,2), P(z,z)= \/zl)\—z exp <2K;—Z> (26)

Since the object changes the wave field only in the z-direction we can calculate the
integral over y directly. The result looks as a convolution of two propagators which equals
the propagator once again but on the total distance

m/dyP(yd — Y, 240) P(Y — Ys, Z0s) = VINP(Yg — Vs, Zas) (27)

where z4, = z4 — 2, is the object-to-detector distance, z,;, = 2, — 2z, is the source-to-
object distance, 245 = 240 + 20s = 2Zq — 25 1S the source-to-detector distance. This result is
well known and it has a clear physical sense from the point of view of Fresnel-Kirchhoff
principle. Thus we obtain the expression

E(Id7 Yd, Zd) = eXp(iKst)S(yd — Ys, st) /d:L’P(ZL’d - T, Zdo)F(I)S(x — T, Zos) (28)

where

S(z,2) = ViXP(r, 2) = % exp <2K§> (29)



is a one-dimensional part of the spherical wave. The position sensitive detector can
measure the intensity of radiation at each point x; therefore we are interested in the
value

1
T ) = |Blaayeza) = — [ de [ da'F ()P (') x

XP(xg— 2, Za0) P* (g — ', 2a0) S (T — X5, 205)S™ (1" — 5, 245) (30)

At this point of our analysis we must remember once again that each point of the
source is an individual photon producer and different photons have no a correlation in
their phases. Therefore we need to integrate just the intensity over all points of the source
rather than the amplitude. The signal which will be really registered by detector equals

(zg) = / dyJ (24, 75) B(x) (31)

where B(z) is the function which describes the brightness of different points on the source.
In a description of the synchrotron radiation source this function is accepted, usually, as
the Gaussian with a random mean value (rms) o, namely,

Blz) = —— exp (-%) (32)

= e
oV 2T
The source size in this case can be estimated as w, = 0v/8.
Substituting Eq.(30) to Eq.(31) we need to integrate only spherical waves from the
source to object which leads to the function

alz, ') = /da:sB(xS)S(x — Xy 205 )S¥ (2" — Tg, 20s) (33)

The integral can be calculated analytically with a help of the table integral

- N 1/2
/_ dx exp(—ifz + iva?) = <%> exp (—2%) (34)

where 3 and 7 are arbitrary complex values. As a result, we obtain

a(z, ') = Zios exp <ZK%> p(r — ') (35)
where
22
o) = e (5 (30
and

(37)



Now we can calculate the total expression

271

1
I(zq) = S /dx/dac' exp ()\Zdoa:d[x' — x]) X

1M 24

X exp ( [2? — x'Q]) F(x)F* (2" p(x — ') (38)

ZdoZos
Here the source properties are represented by the function p(z — z’) which is called the
mutual coherence function in the theory of partial coherence. When source size tends
to zero this function equals unity. In general case it describes the possible correlation
between two points in the object plane.

Let us consider a simple example of the object: a fully opaque screen with two narrow
slits at the position 1 = —a/2 and 2 = a/2. having a small width d (Fig.4) In this case
the function F'(z) can be approximated as F(z) = d[0(x + a/2) 4+ 6(x — a/2)] where §(x)
is a Dirac delta-function. The intensity distribution at the detector plane is described by
simple expression

2d?

I =
($d) )\stzdozos

axrq
1+ p(a) cos (27r >] 39
p(a) cos (22 (39)
It shows that the interference pattern consists of the intensity oscillations (fringes) with
the constant period p = Azg,/a. The quality of the fringes produced by an interferometric
system can be described quantitatively using the visibility V, which, as first formulated
by Michelson, is given by

Tnax () — Lnin ()
Lax () + Lnin ()

Vix) = (40)

where Iax(x) and I,(x) are proportional to the maximum and minimum value of the
irradiance in a vicinity of the point z. The substitution of Eq.(39) to the Eq.(40) gives
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FIG. 4. The experiments with two slits separated by distance a
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us that V(z) = const = u(a). Now we see that the parameter /;. has a physical meaning
of the distance between the slits giving the value 0.6 for the fringes visibility. Usually it
is called the transverse coherent length .

4. SPATIAL COHERENCE. A MAGNIFICATION FACTOR.

The approach presented above follows the corresponding chapters of the books on
optics. However, in practical calculations of the complicated objects it is inconvenient
to calculate a double-dimensional integral in Eq.(38) with a use of the mutual coherence
function of Eq.(36). Instead of this one may calculate directly the integral of Eq.(28) for
all source coordinates and then apply the Eq.(31) for averaging the intensity. In doing
this one may find the useful property of the integral of Eq.(28). Namely, the kernel of the
integral, i.e. the function

P(xq — %, 240)S(T — s, 205) = S(xq — Ts, 2a5) G (T, Tas, Zdoy Zos) (41)

where

1/2 -
Zds 4 Zds 9 Zos 9
(:E s, Zdo ZOS) Z)\Zdozos exp )\Zdo s Zosx Zds Tas ( )
and
Tas = Tq + 1,2 (43)
ZOS

This property allows us to write the relative wave field as follows

E(74, Y4, 24) /
— = = [ de G(x,Tgs, , Zdo, Z0s ) F (T 44
Es(x4,Ya, Za) (& Taes, 2 Fle) 4

Now there is no necessity to calculate the total diffraction pattern for each point of
source because for each point of source the diffraction pattern is the same but it becomes
only to be shifted on the definite distance. According to the Eq.(43) the shift of the
source point from the origin on x, leads to a shift of the diffraction pattern as a whole
on the distance z24,/2,s. Therefore we can calculate the interference fringes only for
the middle point of the source and afterwards we can average the resulting intensity over
the area having a width w! = wsz4,/20s Where w; is the source size (see Fig. 1.3). It is
obvious that the fringes with the distance between them py less than w) will disappear or
become much less visible. On the other hand, the fringes with the distance py > w! will
be practically undisturbed by the source size.

This simple analysis allows us to formulate the main recipe for increasing the spatial
coherence. Together with decreasing the source size one need to increase the distance
source-to-object compared to the distance object-to-detector. It is of interest to estimate
the characteristics of the ESRF (European Synchrotron Radiation Facility) beam lines.
The source size of the undulator w,; ~ 30 pum, the source-to-object distance z,; ~ 40 m.
With these parameters we calculate that for the object-to-detector distance z4, = 1 m,
the fringes having the distance p; > 1 ym between them can be distinguished.
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5. SPATIAL COHERENCE. VIEW OF THE ANGULAR ANALYSIS

The monochromatic spherical wave presents by itself one kind of the coherent wave
field. Tts characteristics are the frequency and the point of origin. However, just another
coherent wave field is widely considered in the physics of high energy particles, in general,
and in the physics of high energy X-rays optics, in particular. This is a plane monochro-
matic wave. Its characteristics are the frequency and the direction of movement while the
location in space is absent. Nevertheless, since the full set of plane waves forms a complete
basis, each space function can be expanded over the plane waves, in other words, it can
be expressed as a superposition of plane waves. For example, the spherical wave with the
origin at r = 0 in the half-space (sq - r) > 0 has a well known representation

exp(ikr) _, . / dq exp (iqr + isor/KZ = ¢2)
——— =12m

erp VK@
where q = (¢z,¢y) is a two-dimensional vector in the plane normal to the unit vector s.

To obtain this relation mathematically let us begin once again from the Maxwell’s
equation

Es(z,y,2) = (45)

r

(grad® + K?)E(r,w) = 46(r), K=" (46)
c
Making the Fourier transformation
dk .
E(r,w) = / B exp(kn)E(k,w),  d(k) =1 (47)
(27)°
we find easily
4dr
Ekw) = ——=%. 4

Substituting this expression into the Fourier integral we represent the three-
dimensional wave vector k as k = q + psy where sy is a unit vector along the z-axis
so z = (sor) and separate the integral over q and over p.

E(r) = 2/ (;:)3 exp(iqr) /dpp2 EX(p[(épi) ) (49)

The last integral is calculated by means of Resique Theorem giving a relation (45).
In a frame of small angle approximation the Eq.(45) can be represented as

Fs(z,y,2) ~ % d(‘gg‘iy exp [iko(q) (r — 13)] (50)
with
fala) =50 (K- ) +a G1)
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Here we introduce the radius-vector of the point on the source ry. We shall assume also
that sp = (0,0,1) is a unit vector along the optical axis (axis z), q = (qz, g4, 0) is a small
vector which is perpendicular to sy. It describes the angular deviation of the particular
plane wave from the base direction.

The representation of Eq.(50) allows us to move the problem of calculating the pertur-
bation of the incident wave field by the object from the spherical wave to the plane waves
having different deviations from the middle direction (z-axis). It is not convenient in case
of inhomogeneous object. On the contrary, it is very useful for a description of spherical
wave diffraction in single crystals. Indeed, the single crystal in a form of a plane-parallel
plate is homogeneous at the macro level and it does not change the spatial properties of
the plane wave. The only intensity value can be changed due to an absorption.

However, owing to a crystal lattice, i.e. an inhomogeneity at an atomic level, near the
Bragg angle of two-beam diffraction, for example, the plane wave of standard polarization
becomes splitted on two plane waves. These obtain different phases in passing through the
crystal plate owing to the different phase velocity and this phenomenon is very sensitive
to the angular deviation from the Bragg angle. The "pendellozung” fringes arise in the
angular dependence of intensity as a result of interference between these two waves.

Let us consider this case in more detail from the point of view of observation of this
effect in an experiment. If a scattering plane is (z, z) then the transmission amplitude A,
does not depend on g,, namely, A; = A;(q,;) and the wave field after the crystal plate (at
the detector) can be written as

2t [ dggdg,
K J (2r)?

E(x4, Ya, 24) ~ exp [iko(q)(ra — r)] A(gs) (52)

First of all we can calculate the integral over g, by means of table integral of Eq.(34) as

2mi\ /2 - q
( > / 2— exp <ZQy[y ys] - szsﬁ> = S(yd — Yss st) (53)

This result of calculation is evident physically once again. The partial spherical wave of
y-axis stays the same as without crystal.
Now the wave field is described by the following expression

) 2mi\ /2
E(x4,Ya, 24) = exp(iK 2as)S(Ya — Ys, 2as) (7) X

2

/ 3, P (qu 4 — Ts] — s 2qK> Ay(a), (54)

which may be compared with Eq.(28). Spatially inhomogeneous object influences the
wave field in different extent for different distances source-to-object. On the contrary,
the Bragg diffraction influence in different extent the plane waves with different angular
deviations from the Bragg angle and this does not depend on the position of the crystal
plate between the source and the detector.

In general case of arbitrary value of the source-to-detector distance zg4; the integral
in Eq.(54) may be rather complicated and will be analysed later. Here we consider a
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situation where the distance zy; is very large. In this case the integral can be estimated
approximately by means of stationary phase method considering the function A;(q;) to
be slow one.

The Method of Stationary Phase is a very powerful technique in theoretical optics. It
is a foundation of the geometrical optics which allows to obtain a solution of many optical
problems by simple consideration of ray trajectories. This method allows to estimate
approximately the integral

I(@) = [ dq Flg)exp (i(q, 2)) (55)

where both functions F(q) and ¢(q,z) are slow functions of the variable ¢. However,
the phase ¢(q,z) has very large value. In this case the integrand is strongly oscillating
function, therefore the contribution of all regions of integration is very small except only
the regions where the phase ¢(q, x) has zero first derivative. Let us assume, for the sake
of simplicity, that we have only one such a point go(z) which is a solution of the equation

dp(q, )

il (56)

This point is just the point of stationary phase. Near this point we may expand the phase
as the Taylor series
1 (d?*p
o(q) ~ o(q) + = | 5 (¢ —qo)*+--- (57)
2\dg* ) _
4=4o
Now taking into account that only small region near gy contributes to the integral we
can replace a slow function F'(g) by it’s value at the stationary phase point F(qy) and
consider the integral with approximate expression of the phase Eq.(57). However, since

other regions don’t contribute to the integral we may conserve infinite limits. Then the
integral can be calculated analytically using once again the Eq.(34).

0 1/2
[ anF@exs st o) ~ eriy* (C28) T Faesfica] - 68)

So in accordance with this method we may replace A;(g,) by constant value at the
point inside the integration area where the argument of the exponential has a zero first
derivative. This point is easy to calculate ¢, = K(x4 — x5)/zq4s. After that the integral
becomes equal to the partial spherical wave once again and we obtain

E — 4
(Td, Yds 2a) -y (KId x > (59)
Es(z4,Yd, 24) Zds

The geometrical parameters which enter to the argument of transmission amplitude are
illustrated in Fig.5.

We obtain the result which has a simple interpretation in a frame of geometrical
optics approach. We may represent the spherical wave as a set of rays which pass in
different directions. The density of rays is constant. The crystal plate influence each ray
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in accordance with the deviation of its direction from the Bragg direction. The intensity

of radiation for each point of the source equals
1 2

Zds

J(x4, x5) = |E(2a, Y4, 24)|* = (60)

At <de - Is)

Zds

while the real intensity, which will registered by the detector, is obtained after integrating
Eq. (60) over the source size. If the source has a small z-size w, compared to the period
of the "pendellozung” fringes ps then these will be registered by the position sensitive
detector, for example, by the film. In the opposite case the film will be illuminated
homogeneously showing no coherent effect. One can see that the magnification factor
s absent in this case. The period of fringes can be obtained in the theory of two-beam
diffraction. Tt is known that in the central part of the pattern the period p; oc zgs\/(t.A)Y?
where t. is the crystal plate thickness, ) ia a wavelength of X-rays and A is an extinction
length. Therefore the condition of visibility of the fringes depends on the total distance
source-to-detector. This means that it is essential the angular size of source w;/zy4s as the
source is seen from the detector rather than its real size.

6. ANGULAR COHERENCE. PLANE WAVES

For a long time the study of X-ray diffraction in crystals was made under rather
different conditions when the detector had a large window and it registered the total
intensity over large enough area of space. It is evident that under these conditions we
have to integrate the square modulus of Eq.(54) over x4, 4 and the limits of integration
over x4 can be expanded to infinity. As a result, we obtain

Wy, [ dgy
1= [ dvadya|Ewa, yar 20) = =2 [ T2 14(a) P (61)
Zds K
Crystal A

A Source

| %X

Z CCD-camera
(or film)

st

FIG. 5. The geometrical parameters of in-line experimental spheme including the crystal.
The position of the crystal is unessential. Angular width of the source influences the resolution
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FIG. 6. Measurement of "rocking curve” by double crystal experimental setup

where W, is a width of the detector window in y-direction. This result shows that the
integral intensity over the position at the detector does not depent on the source size and
the source-to-detector distance. On the other hand, it can be represented as the integral
transmission coefficient of the crystal over the angle of incidence of different plane waves.
It is a consequence of the general property of Fourier transformation

dq
[arlp@)P = [ Z1F@P, i P / ~LF(q) expliga)

which is known as the Parseval’s theorem. Naturally it is not possible to study the
coherent phenomena by means of this experimental setup.

However, this experimental arrangement may be much enhanced by introducing the
second crystal before the sample. It must be the perfect crystal under the Bragg condition
in reflection or transmission geometry and the sample can be slightly rotated near the
Bragg angle. The Fig.6 shows schematically the experimental set-up in transmission
geometry. In this case the detector will measure

Mo [ g, + a0 Bl (62)

I(C]o) =

where B,(q,) is the reflection amplitude of the second crystal and ¢y is the additional
deviation of the plane wave from the Bragg angle owing to rotating the crystal. The
preceding crystal plays the role of the plane wave source for analysing the angular depen-
dence of the sample. It is called usually a monochromator. If the width of the reflectivity
maximum of the monochromator is much less compared to the angular period of the
"pendellozung” fringes of the sample then one obtains the possibility to investigate this
coherent phenomenon in dependence on ¢g, namely,

(g0) =

dq"” (63)

The curve of such a type is called ” the rocking curve”.
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Thus, the rocking curve allows us to investigate the interference phenomena as a
result of partially coherent plane wave superposition. This branch of X-ray optics is
known as the ” X-ray multicrystal diffractometry”. Just in the frame of this optics the
monochromatization of the radiation is performed (see above). The coherent phenomena
of X-ray diffractometry is known for a long time, while the spatial coherence of new X-ray
source at the synchrotron radiation beam lines is a relatively fresh branch of X-ray optics.

Another branch of coherent X-ray crystal optics is the ” Diffraction topography of
crystal-lattice defects”. The field of displacement of atoms from their normal position
near the individual crystal-lattice defect like a dislocation may be clearly seen on the film
if the front of X-ray beam before the crystal is restricted by a narrow slit. The theory
of this effect is rather complicated and it is based on the spatially inhomogeneous crystal
lattice. In this case the Maxwell’s equations are reduced to the Takagi-Taupin equations
which have to be calculated numerically.
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